Tangent-Normal Adversarial Regularization for Semi-supervised Learning

被引:22
|
作者
Yu, Bing [1 ]
Wu, Jingfeng [1 ]
Ma, Jinwen [1 ]
Zhu, Zhanxing [1 ,2 ,3 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[2] Peking Univ, Ctr Data Sci, Beijing, Peoples R China
[3] Beijing Inst Big Data Res, Beijing, Peoples R China
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
MANIFOLD REGULARIZATION;
D O I
10.1109/CVPR.2019.01093
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compared with standard supervised learning, the key difficulty in semi-supervised learning is how to make full use of the unlabeled data. A recently proposed method, virtual adversarial training (VAT), smartly performs adversarial training without label information to impose a local smoothness on the classifier, which is especially beneficial to semi-supervised learning. In this work, we propose tangent-normal adversarial regularization (TNAR) as an extension of VAT by taking the data manifold into consideration. The proposed TNAR is composed by two complementary parts, the tangent adversarial regularization (TAR) and the normal adversarial regularization (NAR). In TAR, VAT is applied along the tangent space of the data manifold, aiming to enforce local invariance of the classifier on the manifold, while in NAR, VAT is performed on the normal space orthogonal to the tangent space, intending to impose robustness on the classifier against the noise causing the observed data deviating from the underlying data manifold. Demonstrated by experiments on both artificial and practical datasets, our proposed TAR and NAR complement with each other, and jointly outperforms other state-of-the-art methods for semi-supervised learning.
引用
收藏
页码:10668 / 10676
页数:9
相关论文
共 50 条
  • [1] Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
    Miyato, Takeru
    Maeda, Shin-Ichi
    Koyama, Masanori
    Ishii, Shin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (08) : 1979 - 1993
  • [2] Discriminative Regularization with Conditional Generative Adversarial Nets for Semi-Supervised Learning
    Xie, Qiangian
    Peng, Min
    Huang, Jimin
    Wang, Bin
    Wang, Hua
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [3] Adversarial Dropout for Supervised and Semi-Supervised Learning
    Park, Sungrae
    Park, JunKeon
    Shin, Su-Jin
    Moon, Il-Chul
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3917 - 3924
  • [4] Contrastive Regularization for Semi-Supervised Learning
    Lee, Doyup
    Kim, Sungwoong
    Kim, Ildoo
    Cheon, Yeongjae
    Cho, Minsu
    Han, Wook-Shin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3910 - 3919
  • [5] Adversarial Transformations for Semi-Supervised Learning
    Suzuki, Teppei
    Sato, Ikuro
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5916 - 5923
  • [6] Generative Adversarial Training for Supervised and Semi-supervised Learning
    Wang, Xianmin
    Li, Jing
    Liu, Qi
    Zhao, Wenpeng
    Li, Zuoyong
    Wang, Wenhao
    FRONTIERS IN NEUROROBOTICS, 2021, 15
  • [7] Manifold adversarial training for supervised and semi-supervised learning
    Zhang, Shufei
    Huang, Kaizhu
    Zhu, Jianke
    Liu, Yang
    NEURAL NETWORKS, 2021, 140 : 282 - 293
  • [8] Semi-supervised learning for ship detection based on class-coordinate adversarial regularization
    Feng, Junjian
    Li, Bin
    Tian, Lianfang
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 882 - 890
  • [9] Semi-supervised learning with nuclear norm regularization
    Shang, Fanhua
    Jiao, L. C.
    Liu, Yuanyuan
    Tong, Hanghang
    PATTERN RECOGNITION, 2013, 46 (08) : 2323 - 2336
  • [10] Pointwise manifold regularization for semi-supervised learning
    Wang, Yunyun
    Han, Jiao
    Shen, Yating
    Xue, Hui
    FRONTIERS OF COMPUTER SCIENCE, 2021, 15 (01)