Weak solutions for a coupled system of Pettis-Hadamard fractional differential equations

被引:6
作者
Abbas, Saida [1 ]
Benchohra, Mouffak [2 ]
Zhou, Yong [3 ,4 ]
Alsaedi, Ahmed [4 ]
机构
[1] Univ Saida, Lab Math, POB 138, Saida 20000, Algeria
[2] Univ Djillali Liabes Sidi Bel Abbes, Lab Math, POB 89, Sidi Bel Abbes 22000, Algeria
[3] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[4] King Abdulaziz Univ, NAAM Res Grp, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
functional integral equation; coupled system; partial Pettis-Hadamard fractional integral; measure of weak noncompactness; weak solution; BANACH-SPACES; EVOLUTION-EQUATIONS; EXISTENCE; INCLUSIONS;
D O I
10.1186/s13662-017-1391-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by applying the technique of measure of weak noncompactness and Monch's fixed point theorem, we investigate the existence of weak solutions under the Pettis integrability assumption for a coupled system of Hadamard fractional differential equations.
引用
收藏
页数:11
相关论文
共 35 条
[1]  
Abbas S, 2015, ADV FRACTIONAL DIFFE
[2]  
ABBAS S, 2015, ADV DYN SYST APPL, V10, P97
[3]   Fractional order integral equations of two independent variables [J].
Abbas, Said ;
Benchohra, Mouffak .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 227 :755-761
[4]   Nonexistence results for the Cauchy problem of time fractional nonlinear systems of thermo-elasticity [J].
Ahmad, B. ;
Alsaedi, A. ;
Kirane, M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (12) :4272-4279
[5]   AN INVERSE PROBLEM FOR SPACE AND TIME FRACTIONAL EVOLUTION EQUATIONS WITH AN INVOLUTION PERTURBATION [J].
Ahmad, Bashir ;
Alsaedi, Ahmed ;
Kirane, Mokhtar ;
Tapdigoglu, Ramiz G. .
QUAESTIONES MATHEMATICAE, 2017, 40 (02) :151-160
[6]  
Akhmerov R.R., 1992, Oper. Theory Adv. Appl, V55
[7]  
Alvarez J.C., 1985, Rev. Real. Acad. Cienc. Exact. Fis. Natur. Madrid, V79, P53
[8]  
[Anonymous], 2006, THEORY APPL FRACTION
[9]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[10]  
[Anonymous], 2012, TOPICS FRACTIONAL DI, DOI DOI 10.1007/978-1-4614-4036-9