Determination of moisture in raw coffee by near infra-red reflectance spectroscopy and multivariate regression

被引:0
|
作者
Morgano, Marcelo Antonio [1 ,5 ]
Faria, Cristiano Gomes [2 ]
Ferrao, Marco Flores [3 ]
Bragagnolo, Neura [4 ]
de Castro Ferreira, Marcia Miguel [5 ]
机构
[1] ITAL, Ctr Quim Alimentos & Nutr Aplicada, BR-13070178 Campinas, SP, Brazil
[2] EMBRAPA, Ctr Nacl Pesquisa Gado Leite, BR-36038330 Juiz De Fora, MG, Brazil
[3] UNISC, Dept Quim & Fis, BR-96815000 Santa Cruz Do Sul, Brazil
[4] Univ Estadual Campinas, FEA, Dept Ciencia Alimentos, BR-13083970 Campinas, SP, Brazil
[5] Univ Estadual Campinas, Inst Quim, BR-13081970 Campinas, SP, Brazil
来源
CIENCIA E TECNOLOGIA DE ALIMENTOS | 2008年 / 28卷 / 01期
关键词
moisture determination; coffee; infrared spectroscopy; multivariate regression;
D O I
暂无
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Near infra-red reflectance (NIR) spectroscopy was used to measure the moisture content in raw coffee. Different models using partial least squares (PLS) with data pre-processing were used. Regression models were built with 157 spectra of the samples of raw coffee collected using a near infrared spectrometer with an accessory of diffuse reflectance, between 4500 and 10000 cm(-1). The original NIR spectra went through different transformations and mathematical pre treatments, such as the Kubelka-Munk transformation; multiplicative signal correction (MSC); spline smoothing and movable average, and the data were scaled by variance. The regression model permitted the determination of the moisture content of the raw coffee samples with a standard error of calibration (SEC) = 0.569 g.100 g(-1); standard error of validation = 0.298 g.100 g(-1); correlation coefficient (r) 0.712 and 0.818 for calibration and validation, respectively, and average relative error of 4.1% for validation samples.
引用
收藏
页码:12 / 17
页数:6
相关论文
共 38 条
  • [21] Novel method for the detection of adulterants in coffee and the determination of a coffee's geographical origin using near infrared spectroscopy complemented by an autoencoder
    Munyendo, Leah
    Njoroge, Daniel
    Zhang, Yanyan
    Hitzmann, Bernd
    INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2023, 58 (03): : 1284 - 1298
  • [22] Ferrocene-terminated alkanethiol self-assembled monolayers: An electrochemical and in situ surface-enhanced infra-red absorption spectroscopy study
    Rudnev, Alexander V.
    Zhumaev, Ulmas
    Utsunomiya, Toru
    Fan, Chunjie
    Yokota, Yasuyuki
    Fukui, Ken-ichi
    Wandlowski, Thomas
    ELECTROCHIMICA ACTA, 2013, 107 : 33 - 44
  • [23] Characterization of urinary metabolites associated with malaria infection using infra-red spectroscopy and liquid chromatography-mass spectrometry in South Western Uganda
    Birungi, Grace
    Achar, Joan Beryl
    Byamugisha, Denis
    DISCOVER APPLIED SCIENCES, 2024, 6 (07)
  • [24] Determination of Cetane Number of Biodiesel/Diesel Blends Using Mid-Infrared Spectroscopy and Multivariate Regression
    Chiella Ruschel, Carla Felippi
    Huang, Chun Te
    Samios, Dimitrios
    Ferrao, Marco Flores
    Yamamoto, Carlos Itsuo
    Barato Plocharski, Rubia Carla
    ORBITAL-THE ELECTRONIC JOURNAL OF CHEMISTRY, 2014, 6 (01): : 39 - 46
  • [25] Gold nanoparticles bridging infra-red spectroscopy and laser desorption/ionization mass spectrometry for direct analysis of over-the-counter drug and botanical medicines
    Chau, Siu-Leung
    Tang, Ho-Wai
    Ng, Kwan-Ming
    ANALYTICA CHIMICA ACTA, 2016, 919 : 62 - 69
  • [26] Investigation of NIR spectra pre-processing methods combined with multivariate regression for determination of moisture in powdered industrial egg
    Watanabe, Lycio Shinji
    Bovolenta, Yuri Renan
    Acquaro Junior, Vinicius Ricardo
    Barbin, Douglas Fernandes
    Madeira, Tiago Bervelieri
    Nixdorf, Suzana Lucy
    ACTA SCIENTIARUM-TECHNOLOGY, 2018, 40
  • [27] Species identification in selected raw homogenized meats by reflectance spectroscopy in the mid-infrared, near-infrared, and visible ranges
    Downey, G
    McElhinney, J
    Fearn, T
    APPLIED SPECTROSCOPY, 2000, 54 (06) : 894 - 899
  • [28] Predicting intramuscular fat, moisture and Warner-Bratzler shear force in pork muscle using near infrared reflectance spectroscopy
    Barlocco, N
    Vadell, A
    Ballesteros, F
    Galietta, G
    Cozzolino, D
    ANIMAL SCIENCE, 2006, 82 : 111 - 116
  • [29] Determination of SE 216469-S during tablet production using near-infrared reflectance spectroscopy
    Han, SM
    Faulkner, PG
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 1996, 14 (12) : 1681 - 1689
  • [30] Simultaneous determination of sulfur, nitrogen and ash for vegetable tannins using ATR-FTIR spectroscopy and multivariate regression
    Weiler, Fabio Henrique
    Grasel, Fabio dos Santos
    Lourega, Rogerio Vescia
    Ramos, Alessandro da Silva
    Ferrao, Marco Flores
    MICROCHEMICAL JOURNAL, 2019, 149