Mixed finite element formulations with volume bubble functions for triangular elements

被引:9
|
作者
Caylak, I. [1 ]
Mahnken, R. [1 ]
机构
[1] Univ Paderborn, Chair Engn Mech LTM, D-33098 Paderborn, Germany
关键词
Mixed finite element; Volume bubble; Incompatible modes; Enhanced strains; ELASTICITY; STABILITY;
D O I
10.1016/j.compstruc.2011.07.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper deals with volume bubble functions for mixed finite triangular elements in geometrically linear elasticity. In two different versions these functions are used in order to enrich the displacement field and the enhanced strain field, respectively. Appropriate conditions for satisfaction of the patch test are verified. In the numerical example, firstly the patch test is satisfied. Secondly, simulations of Cook's membrane problem demonstrate that the proposed formulations avoid locking and reduce stress oscillations for incompressible materials. (C) 2011 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.
引用
收藏
页码:1844 / 1851
页数:8
相关论文
共 50 条
  • [1] A CONTROL VOLUME MIXED FINITE ELEMENT FORMULATION FOR TRIANGULAR ELEMENTS
    Naff, Richard L.
    PROCEEDINGS OF THE XVIII INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN WATER RESOURCES (CMWR 2010), 2010, : 1154 - 1161
  • [2] Stabilized mixed triangular elements with area bubble functions at small and large deformations
    Caylak, Ismail
    Mahnken, Rolf
    COMPUTERS & STRUCTURES, 2014, 138 : 172 - 182
  • [3] On the stability of mixed polygonal finite element formulations in nonlinear analysis
    Sauren, Bjorn
    Klinkel, Sven
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (09)
  • [4] On the Large Deformation Finite Element Formulations of Beam Elements
    Shabana, A. A.
    Maqueda, L. G.
    Hussein, B. A.
    TRENDS IN COMPUTATIONAL STRUCTURES TECHNOLOGY, 2008, : 247 - 265
  • [5] Mixed finite element-finite volume methods
    Zine Dine, Khadija
    Achtaich, Naceur
    Chagdali, Mohamed
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (03) : 385 - 410
  • [6] An approximation of incompressible miscible displacement in porous media by mixed finite elements and symmetric finite volume element method of characteristics
    Yin, Zhe
    Rui, Hongxing
    Xu, Qiang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (03) : 897 - 915
  • [7] A family of mixed finite elements for the biharmonic equations on triangular and tetrahedral grids
    Hu, Jun
    Ma, Rui
    Zhang, Min
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (12) : 2793 - 2816
  • [8] Decoupling mixed finite elements on hierarchical triangular grids for parabolic problems
    Arraras, A.
    Portero, L.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 319 : 662 - 680
  • [9] The finite volume element method with quadratic basis functions
    Liebau, F
    COMPUTING, 1996, 57 (04) : 281 - 299
  • [10] EXPANDED MIXED FINITE ELEMENT DOMAIN DECOMPOSITION METHODS ON TRIANGULAR GRIDS
    Arraras, Andres
    Portero, Laura
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2014, 11 (02) : 255 - 270