A GRASP algorithm for clustering

被引:0
作者
Cano, JR [1 ]
Cordón, O
Herrera, F
Sánchez, L
机构
[1] Univ Huelva, Dept Software Engn, La Rabida 21071, Huelva, Spain
[2] Univ Granada, Dept Comp Sci & AI, E-18071 Granada, Spain
[3] Univ Oviedo, Dept Comp Sci, Oviedo, Spain
来源
ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2002, PROCEEDINGS | 2002年 / 2527卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new approach for Cluster Analysis based on a Greedy Randomized Adaptive Search Procedure (GRASP), with the objective of overcoming the convergence to a local solution. It uses a probabilistic greedy Kaufman initialization for getting initial solutions and K-Means algorithm as a local search algorithm. We compare it with some typical initialization methods: Random, Forgy, Macqueen and Kaufman. The new approach obtains high quality solutions for the benchmark problems.
引用
收藏
页码:214 / 223
页数:10
相关论文
共 5 条
  • [1] Anderberg M.R., 1973, Probability and Mathematical Statistics
  • [2] Feo T., 1995, J GLOBAL OPTIM, V2, P1
  • [3] An empirical comparison of four initialization methods for the K-Means algorithm
    Peña, JM
    Lozano, JA
    Larrañaga, P
    [J]. PATTERN RECOGNITION LETTERS, 1999, 20 (10) : 1027 - 1040
  • [4] Rousseeuw P.J., 1990, Finding groups in data: An introduction to cluster analysis, V1
  • [5] Theodoridis S., 1999, PATTERN RECOGNITION