SOLVING THE OPTIMAL CONTROL OF VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATION VIA MUNTZ POLYNOMIALS

被引:0
|
作者
Negarchi, Neda [1 ]
Zolfegharifar, Sayyed Yaghoub [2 ,3 ]
机构
[1] Islamic Azad Univ, Dept Math, Najafabad Branch, Najafabad, Iran
[2] South Ural State Univ, Dept Bldg Construct & Struct, Chelyabinsk, Russia
[3] Islamic Azad Univ, Fac Engn, Dept Civil Engn, YASOOJ Branch, Yasuj, Iran
来源
关键词
Optimal control problem; Volterra-Fredholm integro-differential equation; Muntz-Legendre polynomials; Legendre-Gauss-Lobatto points; Legendre-Gauss-Lobatto quadrature; INTEGRAL-EQUATIONS; SYSTEMS;
D O I
10.47013/14.3.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of the current paper is to present a direct numerical method for solving optimal control problem for systems governed by Volterra-Fredholm integro-differential equation. This method is based upon a new form of orthogonal Miintz-Legendre polynomials, and collocation method to transform the optimal control problem to a nonlinear programming problem with finite-dimensional. The accuracy and efficiency of the proposed method are examined with illustrative examples.
引用
收藏
页码:453 / 466
页数:14
相关论文
共 50 条
  • [41] The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials
    Yalçinbas, S
    Sezer, M
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 112 (2-3) : 291 - 308
  • [42] Existence and uniqueness results of mild solutions for integro-differential Volterra-Fredholm equations
    Hussain, Khawlah Hashim
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 28 (02): : 137 - 144
  • [43] Uniqueness and Stability Results for Caputo Fractional Volterra-Fredholm Integro-Differential Equations
    Hamoud, Ahmed A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (03): : 313 - 325
  • [44] Hybrid Legendre polynomials and Block-Pulse functions approach for nonlinear Volterra-Fredholm integro-differential equations
    Maleknejad, K.
    Basirat, B.
    Hashemizadeh, E.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) : 2821 - 2828
  • [45] A New Numerical Method to Solve Nonlinear Volterra-Fredholm Integro-Differential Equations
    Hou, Jinjiao
    Niu, Jing
    Xu, Minqiang
    Ngolo, Welreach
    MATHEMATICAL MODELLING AND ANALYSIS, 2021, 26 (03) : 469 - 478
  • [46] Theoretical and Numerical Study for Volterra-Fredholm Fractional Integro-Differential Equations Based on Chebyshev Polynomials of the Third Kind
    Laouar, Zineb
    Arar, Nouria
    Ben Makhlouf, Abdellatif
    COMPLEXITY, 2023, 2023
  • [47] A Bernstein operational matrix approach for solving a system of high order linear Volterra-Fredholm integro-differential equations
    Maleknejad, K.
    Basirat, B.
    Hashemizadeh, E.
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) : 1363 - 1372
  • [48] Chebyshev spectral method for solving fuzzy fractional Fredholm-Volterra integro-differential equation
    Kumar, Sachin
    Nieto, Juan J.
    Ahmad, Bashir
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 192 : 501 - 513
  • [49] Solving multi-point problem for Volterra-Fredholm integro-differential equations using Dzhumabaev parameterization method
    Bakirova, Elmira A.
    Assanova, Anar T.
    Kadirbayeva, Zhazira M.
    OPEN MATHEMATICS, 2024, 22 (01):
  • [50] Solving fuzzy second-order nonlinear Volterra-Fredholm integro-differential equations by using Picard method
    Behzadi, Sh S.
    Allahviranloo, T.
    Abbasbandy, S.
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 : S337 - S346