Low-Dimensional Genotype Embeddings for Predictive Models

被引:0
|
作者
Sultan, Syed Fahad [1 ]
Guo, Xingzhi [2 ]
Skiena, Steven [2 ]
机构
[1] Furman Univ, Greenville, SC 29613 USA
[2] SUNY Stony Brook, Stony Brook, NY USA
来源
13TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, BCB 2022 | 2022年
关键词
genotype; embeddings; privacy-preserving;
D O I
10.1145/3535508.3545507
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop methods for constructing low-dimensional vector representations (embeddings) of large-scale genotyping data, capable of reducing genotypes of hundreds of thousands of SNPs to 100-dimensional embeddings that retain substantial predictive power for inferring medical phenotypes. We demonstrate that embedding-based models yield an average F-score of 0.605 on a test of ten phenoypes (including BMI prediction, genetic relatedness, and depression) versus 0.339 for baseline models. Genotype embeddings also hold promise for creating sharing data while preserving subject anonymity: we show that they retain substantial predictive power even after anonymization by adding Gaussian noise to each dimension.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Gesture Generation with Low-Dimensional Embeddings
    Chiu, Chung-Cheng
    Marsella, Stacy
    AAMAS'14: PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, 2014, : 781 - 788
  • [2] Low-Dimensional Embeddings for Interaction Design
    Rusu, Marius Mihai
    Schoett, Svenja Yvonne
    Williamson, John H.
    Schmidt, Albrecht
    Murray-Smith, Roderick
    ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (02)
  • [3] Interpretation of Structural Preservation in Low-Dimensional Embeddings
    Ghosh, Aindrila
    Nashaat, Mona
    Miller, James
    Quader, Shaikh
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (05) : 2227 - 2240
  • [4] Query Filtering with Low-Dimensional Local Embeddings
    Chavez, Edgar
    Connor, Richard
    Vadicamo, Lucia
    SIMILARITY SEARCH AND APPLICATIONS (SISAP 2019), 2019, 11807 : 233 - 246
  • [5] Continuous Character Control with Low-Dimensional Embeddings
    Levine, Sergey
    Wang, Jack M.
    Haraux, Alexis
    Popovic, Zoran
    Koltun, Vladlen
    ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (04):
  • [6] Visual Exploration of Relationships and Structure in Low-Dimensional Embeddings
    Eckelt, Klaus
    Hinterreiter, Andreas
    Adelberger, Patrick
    Walchshofer, Conny
    Dhanoa, Vaishali
    Humer, Christina
    Heckmann, Moritz
    Steinparz, Christian
    Streit, Marc
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (07) : 3312 - 3326
  • [7] Low-Dimensional Invariant Embeddings for Universal Geometric Learning
    Dym, Nadav
    Gortler, Steven J.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024, 25 (2) : 375 - 415
  • [8] Models for low-dimensional thermoelectricity
    Koga, T.
    Sun, X.
    Cronin, S.B.
    Dresselhaus, M.S.
    Wang, K.L.
    Chen, G.
    Journal of Computer-Aided Materials Design, 1998, 4 (03): : 175 - 182
  • [9] APPROXIMATION ALGORITHMS FOR LOW-DISTORTION EMBEDDINGS INTO LOW-DIMENSIONAL SPACES
    Sidiropoulos, Anastasios
    Badoiu, Mihai
    Dhamdhere, Kedar
    Gupta, Anupam
    Indyk, Piotr
    Rabinovich, Yuri
    Racke, Harald
    Ravi, R.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (01) : 454 - 473
  • [10] Approximation Algorithms for Low-Distortion Embeddings Into Low-Dimensional Spaces
    Badoiu, Mihai
    Dhamdhere, Kedar
    Gupta, Anupam
    Rabinovich, Yuri
    Raecke, Harald
    Ravi, R.
    Sidiropoulos, Anastasios
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 119 - 128