Self-Powered Air Filter Based on an Electrospun Respiratory Triboelectric Nanogenerator

被引:38
|
作者
Hao, Runfang [2 ]
Yang, Shuai [2 ]
Yang, Kun [2 ]
Zhang, Zhiyi [1 ]
Wang, Tao [3 ]
Sang, Shengbo [2 ]
Zhang, Hulin [2 ]
机构
[1] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Coll Informat & Comp, Micro Nano Syst Res Ctr, Taiyuan 030024, Peoples R China
[3] Taiyuan Univ Technol, Coll Mech & Vehicle Engn, Taiyuan 030024, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2021年 / 4卷 / 12期
基金
山西省青年科学基金;
关键词
self-powered; air filter; respiratory triboelectric nanogenerator; electrospinning conductive sponge; PM2.5; PARTICULATE MATTER; SIZE DISTRIBUTION; POLLUTION; HARMFUL; ENERGY; IMPACT; HAZE;
D O I
10.1021/acsaem.1c03328
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-efficiency particulate matter (PM) filtration has been an important effort in air purification; however, conventional physical filtration mechanisms are inefficient in blocking submicron particles, which are extremely hazardous to public health. Here, a self-powered triboelectric air filter (STAF) with high efficiency in filtering PM of different sizes is demonstrated. The STAF consists of conductive sponges (CSs) and electrospun fibers (nanofibrils, NFs), which constitute a respiratory triboelectric nanogenerator (R-TENG) through the coupling of the electrical difference between both materials and the respiratory airflow. It utilizes a reciprocating airflow drive to generate triboelectric charges and improve electrostatic adsorption, especially for fine particles. In the experiment, the STAF can maintain a filtration efficiency of 98% for PM2.5 and up to 91.5% for PM0.5, which clearly exceeds the level of commercial masks. In addition, the STAF maintains a high filtration capacity after one month of storage and has a good performance life. This research is of great importance to effectively improve air purification capacity, protect personal health, and prevent respiratory diseases, and it is also of great value to the development of self-driven wearable applications.
引用
收藏
页码:14700 / 14708
页数:9
相关论文
共 50 条
  • [31] Self-powered silicon PIN neutron detector based on triboelectric nanogenerator
    Zhu, Zhiyuan
    Li, Bao
    Zhao, En
    Yu, Min
    NANO ENERGY, 2022, 102
  • [32] A Self-Powered Lantern Based on a Triboelectric-Photovoltaic Hybrid Nanogenerator
    Cao, Ran
    Wang, Jiaona
    Xing, Yi
    Song, Weixing
    Li, Nianwu
    Zhao, Shuyu
    Zhang, Chi
    Li, Congju
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (04):
  • [33] A triboelectric nanogenerator as self-powered temperature sensor based on PVDF and PTFE
    Kequan Xia
    Zhiyuan Zhu
    Hongze Zhang
    Zhiwei Xu
    Applied Physics A, 2018, 124
  • [34] A triboelectric nanogenerator based on white sugar for self-powered humidity sensor
    Liu, Hongye
    Wang, Hao
    Fan, Yanping
    Lyu, Yan
    Liu, Zenghua
    SOLID-STATE ELECTRONICS, 2020, 174
  • [35] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Li, Yingzhe
    Liu, Chaoran
    Hu, Sanshan
    Sun, Peng
    Fang, Lingxing
    Lazarouk, Serguei
    Labunov, Vladimir
    Yang, Weihuang
    Li, Dujuan
    Fan, Kai
    Wang, Gaofeng
    Dong, Linxi
    Che, Lufeng
    ACOUSTICS AUSTRALIA, 2022, 50 (03) : 383 - 391
  • [36] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Yingzhe Li
    Chaoran Liu
    Sanshan Hu
    Peng Sun
    Lingxing Fang
    Serguei Lazarouk
    Vladimir Labunov
    Weihuang Yang
    Dujuan Li
    Kai Fan
    Gaofeng Wang
    Linxi Dong
    Lufeng Che
    Acoustics Australia, 2022, 50 : 383 - 391
  • [37] A Self-Powered Vector Angle/Displacement Sensor Based on Triboelectric Nanogenerator
    Li, Chengyu
    Wang, Ziming
    Shu, Sheng
    Tang, Wei
    MICROMACHINES, 2021, 12 (03) : 1 - 10
  • [38] Self-Powered Phase Transition Driven by Triboelectric Nanogenerator
    Ren, Lele
    Xiao, Junfeng
    Wang, Wei
    Yu, Aifang
    Zhang, Yufei
    Zhai, Junyi
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (05) : 2845 - 2852
  • [39] Self-powered AC electrokinetic microfluidic system based on triboelectric nanogenerator
    Zhou, Jian
    Tao, Ye
    Liu, Weiyu
    Sun, Haizhen
    Wu, Wenlong
    Song, Chunlei
    Xue, Rui
    Jiang, Tianyi
    Jiang, Hongyuan
    Ren, Yukun
    NANO ENERGY, 2021, 89
  • [40] A triboelectric nanogenerator as self-powered temperature sensor based on PVDF and PTFE
    Xia, Kequan
    Zhu, Zhiyuan
    Zhang, Hongze
    Xu, Zhiwei
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (08):