Two mutant forms of the S1/TPR-containing protein Rrp5p affect the 18S rRNA synthesis in Saccharomyces cerevisiae

被引:52
作者
Torchet, C [1 ]
Jacq, C [1 ]
Hermann-Le Denmat, S [1 ]
机构
[1] Ecole Normale Super, CNRS, URA 1302, Genet Mol Lab, F-75230 Paris 05, France
关键词
ribosomal protein S1; ribosome; RNA helicase; rRNA processing; yeast;
D O I
10.1017/S1355838298981511
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The genetic depletion of yeast Rrp5p results in a synthesis defect of both 18S and 5.8S ribosomal RNAs (Venema J, Tollervey D. 1996. EMBO J 15:5701-5714). We have isolated the RRP5 gene in a genetic approach aimed to select for yeast factors interfering with protein import into mitochondria. We describe here a striking feature of Rrp5p amino acid sequence, namely the presence of twelve putative S1 RNA-binding motifs and seven tetratricopeptide repeats (TPR) motifs. We have constructed two conditional temperature-sensitive alleles of RRP5 gene and analyzed them for associated rRNA-processing defects. First, a functional "bipartite gene" was generated revealing that the S1 and TPR parts of the protein can act independently of each other. We also generated a two amino acid deletion in TPR unit: 1 (rrp5 Delta 6 allele). The two mutant forms of Rrp5p were shown to cause a defect in 18S rRNA synthesis with no detectable effects on 5.8S rRNA production. However, the rRNA processing pathway was differently affected in each case. Interestingly, the ROK1 gene which, like RRP5, was previously isolated in a screen for synthetic lethal mutations with snR10 deletion, was here identified as a high copy suppressor of the rrp5 Delta 6 temperature-sensitive allele. ROK1 also acts as a low copy suppressor but cannot bypass the cellular requirement for RRP5. Furthermore, we show that suppression by the Rok1p putative RNA helicase rescues the 18S rRNA synthesis defect caused by the rrp5 Delta 6 mutation.
引用
收藏
页码:1636 / 1652
页数:17
相关论文
共 59 条
[1]  
Allmang C, 1996, RNA, V2, P63
[2]   A MITOCHONDRIAL RNA MATURASE GENE TRANSFERRED TO THE YEAST NUCLEUS CAN CONTROL MITOCHONDRIAL MESSENGER-RNA SPLICING [J].
BANROQUES, J ;
DELAHODDE, A ;
JACQ, C .
CELL, 1986, 46 (06) :837-844
[3]   A SIMPLE AND EFFICIENT METHOD FOR DIRECT GENE DELETION IN SACCHAROMYCES-CEREVISIAE [J].
BAUDIN, A ;
OZIERKALOGEROPOULOS, O ;
DENOUEL, A ;
LACROUTE, F ;
CULLIN, C .
NUCLEIC ACIDS RESEARCH, 1993, 21 (14) :3329-3330
[4]   A POSITIVE SELECTION FOR MUTANTS LACKING OROTIDINE-5'-PHOSPHATE DECARBOXYLASE ACTIVITY IN YEAST - 5-FLUORO-OROTIC ACID RESISTANCE [J].
BOEKE, JD ;
LACROUTE, F ;
FINK, GR .
MOLECULAR & GENERAL GENETICS, 1984, 197 (02) :345-346
[5]   RIBOSOME-MESSENGER RECOGNITION - MESSENGER-RNA TARGET SITES FOR RIBOSOMAL-PROTEIN S1 [J].
BONI, IV ;
ISAEVA, DM ;
MUSYCHENKO, ML ;
TZAREVA, NV .
NUCLEIC ACIDS RESEARCH, 1991, 19 (01) :155-162
[6]   A FAMILY OF LOW AND HIGH COPY REPLICATIVE, INTEGRATIVE AND SINGLE-STRANDED SACCHAROMYCES-CEREVISIAE ESCHERICHIA-COLI SHUTTLE VECTORS [J].
BONNEAUD, N ;
OZIERKALOGEROPOULOS, O ;
LI, GY ;
LABOUESSE, M ;
MINVIELLESEBASTIA, L ;
LACROUTE, F .
YEAST, 1991, 7 (06) :609-615
[7]   A MUTANT NUCLEAR-PROTEIN WITH SIMILARITY TO RNA-BINDING PROTEINS INTERFERES WITH NUCLEAR IMPORT IN YEAST [J].
BOSSIE, MA ;
DEHORATIUS, C ;
BARCELO, G ;
SILVER, P .
MOLECULAR BIOLOGY OF THE CELL, 1992, 3 (08) :875-893
[8]   The solution structure of the S1 RNA binding domain: A member of an ancient nucleic acid-binding fold [J].
Bycroft, M ;
Hubbard, TJP ;
Proctor, M ;
Freund, SMV ;
Murzin, AG .
CELL, 1997, 88 (02) :235-242
[9]   HUMAN SOS1 - A GUANINE-NUCLEOTIDE EXCHANGE FACTOR FOR RAS THAT BINDS TO GRB2 [J].
CHARDIN, P ;
CAMONIS, JH ;
GALE, NW ;
VANAELST, L ;
SCHLESSINGER, J ;
WIGLER, MH ;
BARSAGI, D .
SCIENCE, 1993, 260 (5112) :1338-1343
[10]  
Claros M G, 1996, Methods Enzymol, V264, P389, DOI 10.1016/S0076-6879(96)64036-1