Variational density matrix optimization using semidefinite programming

被引:1
|
作者
Verstichel, Brecht [1 ]
van Aggelen, Helen [2 ]
Van Neck, Dimitri [1 ]
Ayers, Paul W. [3 ]
Bultinck, Patrick [2 ]
机构
[1] Univ Ghent, Ctr Mol Modeling, B-9052 Zwijnaarde, Belgium
[2] Univ Ghent, Dept Inorgan & Phys Chem, B-9000 Ghent, Belgium
[3] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada
关键词
Variational; Density matrix; Semidefinite programming; STATE CORRELATION ENERGIES; ATOMIC IONS;
D O I
10.1016/j.cpc.2010.12.034
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We discuss how semidefinite programming can be used to determine the second-order density matrix directly through a variational optimization. We show how the problem of characterizing a physical or N-representable density matrix leads to matrix-positivity constraints on the density matrix. We then formulate this in a standard semidefinite programming form, after which two interior point methods are discussed to solve the SDP. As an example we show the results of an application of the method on the isoelectronic series of Beryllium. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2025 / 2028
页数:4
相关论文
共 50 条
  • [41] Equality based contraction of semidefinite programming relaxations in polynomial optimization
    Vo, Cong
    Muramatsu, Masakazu
    Kojima, Masakazu
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 2008, 51 (01) : 111 - 125
  • [42] BILGO: Bilateral greedy optimization for large scale semidefinite programming
    Hao, Zhifeng
    Yuan, Ganzhao
    Ghanem, Bernard
    NEUROCOMPUTING, 2014, 127 : 247 - 257
  • [43] BIQUADRATIC OPTIMIZATION OVER UNIT SPHERES AND SEMIDEFINITE PROGRAMMING RELAXATIONS
    Ling, Chen
    Nie, Jiawang
    Qi, Liqun
    Ye, Yinyu
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1286 - 1310
  • [44] Bandgap optimization of two-dimensional photonic crystals using semidefinite programming and subspace methods
    Men, H.
    Nguyen, N. C.
    Freund, R. M.
    Parrilo, P. A.
    Peraire, J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (10) : 3706 - 3725
  • [45] Penalized semidefinite programming for quadratically-constrained quadratic optimization
    Ramtin Madani
    Mohsen Kheirandishfard
    Javad Lavaei
    Alper Atamtürk
    Journal of Global Optimization, 2020, 78 : 423 - 451
  • [46] Solving Euclidean distance matrix completion problems via semidefinite programming
    Alfakih, AY
    Khandani, A
    Wolkowicz, H
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) : 13 - 30
  • [47] Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming
    Abdo Y. Alfakih
    Amir Khandani
    Henry Wolkowicz
    Computational Optimization and Applications, 1999, 12 : 13 - 30
  • [48] Scalable semidefinite programming approach to variational embedding for quantum many-body problems
    Khoo, Yuehaw
    Lindsey, Michael
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 510
  • [49] Scalable Semidefinite Programming
    Yurtsever, Alp
    Tropp, Joel A.
    Fercoq, Olivier
    Udell, Madeleine
    Cevher, Volkan
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2021, 3 (01): : 171 - 200
  • [50] Multisection in the Stochastic Block Model Using Semidefinite Programming
    Agarwal, Naman
    Bandeira, Afonso S.
    Koiliaris, Konstantinos
    Kolla, Alexandra
    COMPRESSED SENSING AND ITS APPLICATIONS, 2017, : 125 - 162