Variational density matrix optimization using semidefinite programming

被引:1
|
作者
Verstichel, Brecht [1 ]
van Aggelen, Helen [2 ]
Van Neck, Dimitri [1 ]
Ayers, Paul W. [3 ]
Bultinck, Patrick [2 ]
机构
[1] Univ Ghent, Ctr Mol Modeling, B-9052 Zwijnaarde, Belgium
[2] Univ Ghent, Dept Inorgan & Phys Chem, B-9000 Ghent, Belgium
[3] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada
关键词
Variational; Density matrix; Semidefinite programming; STATE CORRELATION ENERGIES; ATOMIC IONS;
D O I
10.1016/j.cpc.2010.12.034
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We discuss how semidefinite programming can be used to determine the second-order density matrix directly through a variational optimization. We show how the problem of characterizing a physical or N-representable density matrix leads to matrix-positivity constraints on the density matrix. We then formulate this in a standard semidefinite programming form, after which two interior point methods are discussed to solve the SDP. As an example we show the results of an application of the method on the isoelectronic series of Beryllium. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2025 / 2028
页数:4
相关论文
共 50 条
  • [31] Numerical block diagonalization of matrix *-algebras with application to semidefinite programming
    Etienne de Klerk
    Cristian Dobre
    Dmitrii V. Ṗasechnik
    Mathematical Programming, 2011, 129
  • [32] Testing the nullspace property using semidefinite programming
    d'Aspremont, Alexandre
    El Ghaoui, Laurent
    MATHEMATICAL PROGRAMMING, 2011, 127 (01) : 123 - 144
  • [33] Relaxations of the Satisfiability Problem Using Semidefinite Programming
    Etienne de Klerk
    Hans van Maaren
    Joost P. Warners
    Journal of Automated Reasoning, 2000, 24 : 37 - 65
  • [34] Graph partitioning using linear and semidefinite programming
    Lisser, A
    Rendl, E
    MATHEMATICAL PROGRAMMING, 2003, 95 (01) : 91 - 101
  • [35] Testing the nullspace property using semidefinite programming
    Alexandre d’Aspremont
    Laurent El Ghaoui
    Mathematical Programming, 2011, 127 : 123 - 144
  • [36] Ensemble clustering using semidefinite programming with applications
    Singh, Vikas
    Mukherjee, Lopamudra
    Peng, Jiming
    Xu, Jinhui
    MACHINE LEARNING, 2010, 79 (1-2) : 177 - 200
  • [37] Ensemble clustering using semidefinite programming with applications
    Vikas Singh
    Lopamudra Mukherjee
    Jiming Peng
    Jinhui Xu
    Machine Learning, 2010, 79 : 177 - 200
  • [38] Relaxations of the satisfiability problem using semidefinite programming
    De Klerk, E
    Van Maaren, H
    Warners, JP
    JOURNAL OF AUTOMATED REASONING, 2000, 24 (1-2) : 37 - 65
  • [39] Graph partitioning using linear and semidefinite programming
    A. Lisser
    F. Rendl
    Mathematical Programming, 2003, 95 : 91 - 101
  • [40] Penalized semidefinite programming for quadratically-constrained quadratic optimization
    Madani, Ramtin
    Kheirandishfard, Mohsen
    Lavaei, Javad
    Atamturk, Alper
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 78 (03) : 423 - 451