Variational density matrix optimization using semidefinite programming

被引:1
|
作者
Verstichel, Brecht [1 ]
van Aggelen, Helen [2 ]
Van Neck, Dimitri [1 ]
Ayers, Paul W. [3 ]
Bultinck, Patrick [2 ]
机构
[1] Univ Ghent, Ctr Mol Modeling, B-9052 Zwijnaarde, Belgium
[2] Univ Ghent, Dept Inorgan & Phys Chem, B-9000 Ghent, Belgium
[3] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada
关键词
Variational; Density matrix; Semidefinite programming; STATE CORRELATION ENERGIES; ATOMIC IONS;
D O I
10.1016/j.cpc.2010.12.034
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We discuss how semidefinite programming can be used to determine the second-order density matrix directly through a variational optimization. We show how the problem of characterizing a physical or N-representable density matrix leads to matrix-positivity constraints on the density matrix. We then formulate this in a standard semidefinite programming form, after which two interior point methods are discussed to solve the SDP. As an example we show the results of an application of the method on the isoelectronic series of Beryllium. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2025 / 2028
页数:4
相关论文
共 50 条
  • [21] Semidefinite programming hierarchies for constrained bilinear optimization
    Berta, Mario
    Borderi, Francesco
    Fawzi, Omar
    Scholz, Volkher B.
    MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 781 - 829
  • [22] Optimal selection of the regression kernel matrix with semidefinite programming
    Trafalis, TB
    Malyscheff, AM
    FRONTIERS IN GLOBAL OPTIMIZATION, 2003, 74 : 575 - 584
  • [23] Uniqueness of codes using semidefinite programming
    Andries E. Brouwer
    Sven C. Polak
    Designs, Codes and Cryptography, 2019, 87 : 1881 - 1895
  • [24] Stochastic semidefinite programming: A new paradigm for stochastic optimization
    Ariyawansa K.A.
    Zhu Y.
    4OR, 2006, 4 (3) : 65 - 79
  • [25] Uniqueness of codes using semidefinite programming
    Brouwer, Andries E.
    Polak, Sven C.
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (08) : 1881 - 1895
  • [26] SUM-OF-SQUARES OPTIMIZATION WITHOUT SEMIDEFINITE PROGRAMMING
    Papp, David
    Yildiz, Sercan
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (01) : 822 - 851
  • [27] Sensor Placement Optimization for Distributed Acoustic Source Localization System using Semidefinite Programming
    Zhou Rongyan
    Chen Jianfeng
    Yan Qingli
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2017,
  • [28] Numerical block diagonalization of matrix *-algebras with application to semidefinite programming
    de Klerk, Etienne
    Dobre, Cristian
    Pasechnik, Dmitrii V.
    MATHEMATICAL PROGRAMMING, 2011, 129 (01) : 91 - 111
  • [29] A load dispatch method using fractional programming and semidefinite programming
    Kobayashi, Y
    Sawa, T
    Furukawa, T
    Kawamoto, S
    ELECTRICAL ENGINEERING IN JAPAN, 2002, 138 (02) : 49 - 58
  • [30] Semidefinite programming
    Vandenberghe, L
    Boyd, S
    SIAM REVIEW, 1996, 38 (01) : 49 - 95