Wave-breaking phenomenon for a generalized spatially periodic Camassa-Holm system

被引:0
作者
Yu, Shengqi [2 ,1 ]
机构
[1] Nantong Univ, Sch Sci, Nantong 226007, Peoples R China
关键词
two-component -CH system; blow up;
D O I
10.1002/mma.3155
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considered herein is a generalized two-component Camassa-Holm system in spatially periodic setting. We first prove two conservation laws; then under proper assumptions on the initial data, we show the precise blow-up scenarios and sufficient conditions guaranteeing the formation of singularities to the solutions of the generalized Camassa-Holm system. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1405 / 1417
页数:13
相关论文
共 22 条
[11]   Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms [J].
Khesin, Boris ;
Lenells, Jonatan ;
Misiolek, Gerard .
MATHEMATISCHE ANNALEN, 2008, 342 (03) :617-656
[12]  
Lius JJ, 2012, NONLINEAR ANAL-THEOR, V75, P131
[13]  
Lius JJ, 2013, J MATH ANAL APPL, V399, P650
[14]   Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation [J].
Tan, Wenke ;
Yin, Zhaoyang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (05) :1204-1226
[15]  
Toland JF., 1996, Topol. Methods Nonlinear Anal, V7, P1, DOI DOI 10.12775/TMNA.1996.001
[16]  
Wangs MX, 2012, J MATH PHYS, V52, P1
[17]  
Whithams G. B., 1999, LINEAR NONLINEAR WAV
[18]   Global Existence for the Generalized Two-Component Hunter-Saxton System [J].
Wu, Hao ;
Wunsch, Marcus .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2012, 14 (03) :455-469
[19]   THE GENERALIZED HUNTER-SAXTON SYSTEM [J].
Wunsch, Marcus .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (03) :1286-1304
[20]  
Yus SQ, 2012, APPL ANAL, V91, P1321