Wave-breaking phenomenon for a generalized spatially periodic Camassa-Holm system

被引:0
作者
Yu, Shengqi [2 ,1 ]
机构
[1] Nantong Univ, Sch Sci, Nantong 226007, Peoples R China
关键词
two-component -CH system; blow up;
D O I
10.1002/mma.3155
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considered herein is a generalized two-component Camassa-Holm system in spatially periodic setting. We first prove two conservation laws; then under proper assumptions on the initial data, we show the precise blow-up scenarios and sufficient conditions guaranteeing the formation of singularities to the solutions of the generalized Camassa-Holm system. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1405 / 1417
页数:13
相关论文
共 22 条
[1]  
Buttazos G, 1998, ONE DIMENSIONAL VARI
[2]   On the blow-up of solutions of a periodic shallow water equation [J].
Constantin, A .
JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (03) :391-399
[3]   The trajectories of particles in Stokes waves [J].
Constantin, Adrian .
INVENTIONES MATHEMATICAE, 2006, 166 (03) :523-535
[4]   On the blow-up structure for the generalized periodic Camassa-Holm and Degasperis-Procesi equations [J].
Fu, Ying ;
Liu, Yue ;
Qu, Changzheng .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (07) :3125-3158
[5]   Global weak solutions for a two-component Camassa-Holm shallow water system [J].
Guan, Chunxia ;
Yin, Zhaoyang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (04) :1132-1154
[6]   On the Wave-Breaking Phenomena and Global Existence for the Generalized Periodic Camassa-Holm Equation [J].
Gui, Guilong ;
Liu, Yue ;
Zhu, Min .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (21) :4858-4903
[7]   On the Cauchy problem for the two-component Camassa-Holm system [J].
Gui, Guilong ;
Liu, Yue .
MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (1-2) :45-66
[8]   Well-posedness and blow-up phenomena for a periodic two-component Camassa Holm equation [J].
Hu, Qiaoyi ;
Yin, Zhaoyang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 :93-107
[9]   DYNAMICS OF DIRECTOR FIELDS [J].
HUNTER, JK ;
SAXTON, R .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1991, 51 (06) :1498-1521
[10]   Camassa-Holm, Korteweg-de Vries and related models for water waves [J].
Johnson, RS .
JOURNAL OF FLUID MECHANICS, 2002, 455 :63-82