Deep learning ensembles for melanoma recognition in dermoscopy images

被引:329
作者
Codella, N. C. F. [1 ]
Nguyen, Q. -B. [1 ]
Pankanti, S. [1 ]
Gutman, D. A. [2 ]
Helba, B. [3 ]
Halpern, A. C. [4 ,5 ]
Smith, J. R. [1 ,6 ]
机构
[1] IBM Res, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Emory Univ, Dept Neurol, Sch Med, Atlanta, GA 30322 USA
[3] Kitware Inc, Clifton Pk, NY 12065 USA
[4] Mem Sloan Kettering Canc Ctr, Dermatol Serv, New York, NY 10065 USA
[5] Mem Sloan Kettering Canc Ctr, Melanoma Dis Management Team, New York, NY 10065 USA
[6] IBM Res, Thomas J Watson Res Ctr, Multimedia & Vis Team, Yorktown Hts, NY 10598 USA
关键词
PIGMENTED SKIN-LESIONS; EPILUMINESCENCE MICROSCOPY; NEURAL-NETWORK; DIAGNOSIS; CLASSIFICATION; TEXTURE; BORDER;
D O I
10.1147/JRD.2017.2708299
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Melanoma is the deadliest form of skin cancer While curable with early detection, only highly trained specialists are capable of accurately recognizing the disease. As expertise is in limited supply, automated systems capable of identifying disease could save lives, reduce unnecessary biopsies, and reduce costs. Toward this goal, we propose a system that combines recent developments in deep learning with established machine learning approaches, creating ensembles of methods that are capable of segmenting skin lesions, as well as analyzing the detected area and surrounding tissue for melanoma detection. The system is evaluated using the largest publicly available benchmark dataset of dermoscopic images, containing 900 training and 379 testing images. New state-of-the-art performance levels are demonstrated, leading to an improvement in the area under receiver operating characteristic curve of 7.5% (0.843 versus 0.783), in average precision of 4% (0.649 versus 0.624), and in specificity measured at the clinically relevant 95% sensitivity operating point 2.9 times higher than the previous state of the art (36.8% specificity compared to 12.5%). Compared to the average of eight, expert dermatologists on a subset of 100 test images, the proposed system produces a higher accuracy (76% versus 70.5%), and specificity (62% versus 59%) evaluated at an equivalent sensitivity (82%).
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Dermoscopy and Overdiagnosis of Melanoma In Situ
    Nufer, Kaitlin L.
    Raphael, Anthony P.
    Soyer, Peter
    JAMA DERMATOLOGY, 2018, 154 (04) : 398 - 400
  • [42] Dermoscopy of superficial spreading melanoma
    Obieta, M. P.
    Braun, R. P.
    Scope, A.
    Rabinovitz, H.
    Marghoob, A. A.
    GIORNALE ITALIANO DI DERMATOLOGIA E VENEREOLOGIA, 2009, 144 (01): : 51 - 60
  • [43] An automated deep learning models for classification of skin disease using Dermoscopy images: a comprehensive study
    Anand, Vatsala
    Gupta, Sheifali
    Nayak, Soumya Ranjan
    Koundal, Deepika
    Prakash, Deo
    Verma, K. D.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 37379 - 37401
  • [44] Automated color calibration method for dermoscopy images
    Iyatomi, Hitoshi
    Celebi, M. Emre
    Schaefer, Gerald
    Tanaka, Masaru
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2011, 35 (02) : 89 - 98
  • [45] Skin Disease Classification using Dermoscopy Images through Deep Feature Learning Models and Machine Learning Classifiers
    Gupta, Siddharth
    Panwar, Avnish
    Mishra, Kishor
    IEEE EUROCON 2021 - 19TH INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES, 2021, : 170 - 174
  • [46] An automated deep learning models for classification of skin disease using Dermoscopy images: a comprehensive study
    Vatsala Anand
    Sheifali Gupta
    Soumya Ranjan Nayak
    Deepika Koundal
    Deo Prakash
    K. D. Verma
    Multimedia Tools and Applications, 2022, 81 : 37379 - 37401
  • [47] SCDNet: A Deep Learning-Based Framework for the Multiclassification of Skin Cancer Using Dermoscopy Images
    Naeem, Ahmad
    Anees, Tayyaba
    Fiza, Makhmoor
    Naqvi, Rizwan Ali
    Lee, Seung-Won
    SENSORS, 2022, 22 (15)
  • [48] Two Systems for the Detection of Melanomas in Dermoscopy Images Using Texture and Color Features
    Barata, Catarina
    Ruela, Margarida
    Francisco, Mariana
    Mendonca, Teresa
    Marques, Jorge S.
    IEEE SYSTEMS JOURNAL, 2014, 8 (03): : 965 - 979
  • [49] Fruit recognition from images using deep learning applications
    Harmandeep Singh Gill
    Ganpathy Murugesan
    Baljit Singh Khehra
    Guna Sekhar Sajja
    Gaurav Gupta
    Abhishek Bhatt
    Multimedia Tools and Applications, 2022, 81 : 33269 - 33290
  • [50] SNC_Net: Skin Cancer Detection by Integrating Handcrafted and Deep Learning-Based Features Using Dermoscopy Images
    Naeem, Ahmad
    Anees, Tayyaba
    Khalil, Mudassir
    Zahra, Kiran
    Naqvi, Rizwan Ali
    Lee, Seung-Won
    MATHEMATICS, 2024, 12 (07)