Deep learning ensembles for melanoma recognition in dermoscopy images

被引:329
作者
Codella, N. C. F. [1 ]
Nguyen, Q. -B. [1 ]
Pankanti, S. [1 ]
Gutman, D. A. [2 ]
Helba, B. [3 ]
Halpern, A. C. [4 ,5 ]
Smith, J. R. [1 ,6 ]
机构
[1] IBM Res, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Emory Univ, Dept Neurol, Sch Med, Atlanta, GA 30322 USA
[3] Kitware Inc, Clifton Pk, NY 12065 USA
[4] Mem Sloan Kettering Canc Ctr, Dermatol Serv, New York, NY 10065 USA
[5] Mem Sloan Kettering Canc Ctr, Melanoma Dis Management Team, New York, NY 10065 USA
[6] IBM Res, Thomas J Watson Res Ctr, Multimedia & Vis Team, Yorktown Hts, NY 10598 USA
关键词
PIGMENTED SKIN-LESIONS; EPILUMINESCENCE MICROSCOPY; NEURAL-NETWORK; DIAGNOSIS; CLASSIFICATION; TEXTURE; BORDER;
D O I
10.1147/JRD.2017.2708299
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Melanoma is the deadliest form of skin cancer While curable with early detection, only highly trained specialists are capable of accurately recognizing the disease. As expertise is in limited supply, automated systems capable of identifying disease could save lives, reduce unnecessary biopsies, and reduce costs. Toward this goal, we propose a system that combines recent developments in deep learning with established machine learning approaches, creating ensembles of methods that are capable of segmenting skin lesions, as well as analyzing the detected area and surrounding tissue for melanoma detection. The system is evaluated using the largest publicly available benchmark dataset of dermoscopic images, containing 900 training and 379 testing images. New state-of-the-art performance levels are demonstrated, leading to an improvement in the area under receiver operating characteristic curve of 7.5% (0.843 versus 0.783), in average precision of 4% (0.649 versus 0.624), and in specificity measured at the clinically relevant 95% sensitivity operating point 2.9 times higher than the previous state of the art (36.8% specificity compared to 12.5%). Compared to the average of eight, expert dermatologists on a subset of 100 test images, the proposed system produces a higher accuracy (76% versus 70.5%), and specificity (62% versus 59%) evaluated at an equivalent sensitivity (82%).
引用
收藏
页数:15
相关论文
共 50 条
  • [21] MelaNet: an effective deep learning framework for melanoma detection using dermoscopic images
    Lafraxo, Samira
    El Ansari, Mohamed
    Charfi, Said
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (11) : 16021 - 16045
  • [22] Clinically inspired analysis of dermoscopy images using a generative model
    Barata, Catarina
    Celebi, M. Emre
    Marques, Jorge S.
    Rozeira, Jorge
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 151 : 124 - 137
  • [23] Melanoma Segmentation and Classification in Clinical Images Using Deep Learning
    Ge, Yunhao
    Li, Bin
    Zhao, Yanzheng
    Guan, Enguang
    Yan, Weixin
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING (ICMLC 2018), 2018, : 252 - 256
  • [24] Melanoma detection from dermoscopy images using Nasnet Mobile with Transfer Learning
    Cakmak, Mustafa
    Tenekeci, Mehmet Emin
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [25] Biologically Inspired QuadTree Color Detection in Dermoscopy Images of Melanoma
    Mahmouei, Sahar Sabbaghi
    Aldeen, Mohammad
    Stoecker, William V.
    Garnavi, Rahil
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (02) : 570 - 577
  • [26] A comparative study of deep learning architectures on melanoma detection
    Kassani, Sara Hosseinzadeh
    Kassani, Peyman Hosseinzadeh
    TISSUE & CELL, 2019, 58 : 76 - 83
  • [27] WN-based approach to melanoma diagnosis from dermoscopy images
    Sadri, Amir Reza
    Azarianpour, Sepideh
    Zekri, Maryam
    Emre Celebi, Mehmet
    Sadri, Saeid
    IET IMAGE PROCESSING, 2017, 11 (07) : 475 - 482
  • [28] Deep Learning Based Automated Diagnosis of Skin Diseases Using Dermoscopy
    Anand, Vatsala
    Gupta, Sheifali
    Koundal, Deepika
    Mahajan, Shubham
    Pandit, Amit Kant
    Zaguia, Atef
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (02): : 3145 - 3160
  • [29] Forward selection-based ensemble of deep neural networks for melanoma classification in dermoscopy images
    Soylemez, Omer Faruk
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (06) : 1929 - 1943
  • [30] Deep Learning and Machine Learning Techniques of Diagnosis Dermoscopy Images for Early Detection of Skin Diseases
    Abunadi, Ibrahim
    Senan, Ebrahim Mohammed
    ELECTRONICS, 2021, 10 (24)