Loss-tolerant prepare and measure quantum key distribution protocol

被引:3
作者
Mafu, Mhlambululi [1 ]
Sekga, Comfort [1 ]
Senekane, Makhamisa [2 ]
机构
[1] Botswana Int Univ Sci & Technol, Dept Phys & Astron, P Bag 16, Palapye, Botswana
[2] Univ Johannesburg, Inst Intelligent Syst, Corner Kingsway & Univ Rd, ZA-2092 Johannesburg, South Africa
关键词
Loss-tolerant; Quantum key distribution; Quantum non-demolition measurements; Finite key analysis; Photon-number splitting attacks; CRYPTOGRAPHY; SECURITY;
D O I
10.1016/j.sciaf.2021.e01008
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a modified version of the Bennett-Brassard 1984 quantum key distribution protocol intended to tolerate losses, certain forms of noise, and the so-called photon-number splitting attack. These are the issues facing the realization of practical quantum key distribution. The modified protocol is based on quantum non-demolition measurements for systems using weak coherent pulses. Our scheme ensures that emissions corresponding to zero photon pulses, multi-photon pulses, and detector double-clicks are discarded before sifting to improve sifting efficiency and increase the secret key rate. Moreover, we perform the finite key analysis to obtain the maximal achievable secret-key fraction and the corresponding optimal number of signals. Also, we compare our proposed protocol to the decoy-state quantum key distribution protocol. We observe that our proposed quantum key distribution scheme enables a more extended transmission distance than the decoy-state quantum key distribution protocol. Thus, this an advance in quantum communication because current limitations on quantum key distribution involve transmitting secret keys over more considerable distances in the presence of noise or losses in optical fibres. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of African Institute of Mathematical Sciences / Next Einstein Initiative.
引用
收藏
页数:8
相关论文
共 46 条
  • [21] Mafu M., 2013, Ph.D. Thesis
  • [22] Mafu M., 2016, J QUANT INF SCI, V6, P04
  • [23] Finite-key-size security of the Phoenix-Barnett-Chefles 2000 quantum-key-distribution protocol
    Mafu, Mhlambululi
    Garapo, Kevin
    Petruccione, Francesco
    [J]. PHYSICAL REVIEW A, 2014, 90 (03):
  • [24] Finite-size key in the Bennett 1992 quantum-key-distribution protocol for Renyi entropies
    Mafu, Mhlambululi
    Garapo, Kevin
    Petruccione, Francesco
    [J]. PHYSICAL REVIEW A, 2013, 88 (06):
  • [25] Marwala T., 2020, Closing the gap: The Fourth Industrial Revolution in Africa
  • [26] Quantum Key Distribution: A Networking Perspective
    Mehic, Miralem
    Niemiec, Marcin
    Rass, Stefan
    Ma, Jiajun
    Peev, Momtchil
    Aguado, Alejandro
    Martin, Vicente
    Schauer, Stefan
    Poppe, Andreas
    Pacher, Christoph
    Voznak, Miroslav
    [J]. ACM COMPUTING SURVEYS, 2020, 53 (05)
  • [27] Realizing long-term quantum cryptography
    Mirza, Abdul
    Petruccione, Francesco
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (06) : A185 - A188
  • [28] Morgen P, GENEVA VOTE WILL USE
  • [29] Detector decoy quantum key distribution
    Moroder, Tobias
    Curty, Marcos
    Luetkenhaus, Norbert
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [30] Nielsen M. A., 2009, Quantum Computation and Quantum Information