Exploiting Spectral and Spatial Information in Hyperspectral Urban Data With High Resolution

被引:194
|
作者
Dell'Acqua, F. [1 ]
Gamba, P. [1 ]
Ferrari, A. [1 ]
Palmason, J. A. [2 ]
Benediktsson, J. A. [2 ]
Arnason, K. [2 ]
机构
[1] Univ Pavia, Dept Elect, I-27100 Pavia, Italy
[2] Univ Iceland, IS-107 Reykjavik, Iceland
关键词
Hyperspectral imaging; morphology; multiclassification; urban remote sensing;
D O I
10.1109/LGRS.2004.837009
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Very high resolution hyperspectral data should be very useful to provide detailed maps of urban land cover. In order to provide such maps, both accurate and precise classification tools need, however, to be developed. In this letter, new methods for classification of hyperspectral remote sensing data are investigated, with the primary focus on multiple classifications and spatial analysis to improve mapping accuracy in urban areas. In particular, we compare spatial reclassification and mathematical morphology approaches. We show results for classification of DAIS data over the town of Pavia, in northern Italy. Classification maps of two test areas are given, and the overall and individual class accuracies are analyzed with respect to the parameters of the proposed classification procedures.
引用
收藏
页码:322 / 326
页数:5
相关论文
共 50 条
  • [1] Open issues in hyperspectral imaging for diagnostics on paintings: when high spectral and spatial resolution turns into data redundancy
    Cucci, Costanza
    Casini, Andrea
    Picollo, Marcello
    Poggesi, Marco
    Stefani, Lorenzo
    O3A: OPTICS FOR ARTS, ARCHITECTURE, AND ARCHAEOLOGY III, 2011, 8084
  • [2] Neighbouring pixel data augmentation: a simple way to fuse spectral and spatial information for hyperspectral imaging data analysis
    Jamme, Frederic
    Duponchel, Ludovic
    JOURNAL OF CHEMOMETRICS, 2017, 31 (05)
  • [3] Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information
    Yang, He
    Ma, Ben
    Du, Qian
    Yang, Chenghai
    JOURNAL OF APPLIED REMOTE SENSING, 2010, 4
  • [4] SSNet: Exploiting Spatial Information for Tobacco Stem Impurity Detection With Hyperspectral Imaging
    Zhou, Chao
    Li, Zhenye
    Wang, Dongyi
    Xue, Sheng
    Zhu, Tingting
    Ni, Chao
    IEEE ACCESS, 2024, 12 : 55134 - 55145
  • [5] Joint Processing of Spatial Resolution Enhancement and Spectral Unmixing for Hyperspectral Image
    Yi, Chen
    Liu, Ying
    Zheng, Ling
    Gan, Yuquan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] GPU IMPLEMENTATION OF SPATIAL PREPROCESSING FOR SPECTRAL UNMIXING OF HYPERSPECTRAL DATA
    Delgado, Jaime
    Martin, Gabriel
    Plaza, Javier
    Ignacio Jimenez, Luis
    Plaza, Antonio
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 5043 - 5046
  • [7] Subpixel hyperspectral target detection using local spectral and spatial information
    Cohen, Yuval
    Blumberg, Dan G.
    Rotman, Stanley R.
    JOURNAL OF APPLIED REMOTE SENSING, 2012, 6
  • [8] A novel approach to combine spatial and spectral information from hyperspectral images
    Gaci, Belal
    Abdelghafour, Florent
    Ryckewaert, Maxime
    Mas-Garcia, Silvia
    Louargant, Marine
    Verpont, Florence
    Laloum, Yohana
    Bendoula, Ryad
    Chaix, Gilles
    Roger, Jean-Michel
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2023, 240
  • [9] Detection of surface-laid mine fields in VNIR hyperspectral high spatial resolution data
    Achal, SB
    Anger, CD
    McFee, JE
    Herring, RW
    DETECTION AND REMEDIATION TECHNOLOGIES FOR MINES AND MINELIKE TARGETS IV, PTS 1 AND 2, 1999, 3710 : 808 - 818
  • [10] A SPATIO-SPECTRAL CAMERA FOR HIGH RESOLUTION HYPERSPECTRAL IMAGING
    Livens, S.
    Pauly, K.
    Baeck, P.
    Blommaert, J.
    Nuyts, D.
    Zender, J.
    Delaure, B.
    INTERNATIONAL CONFERENCE ON UNMANNED AERIAL VEHICLES IN GEOMATICS (VOLUME XLII-2/W6), 2017, 42-2 (W6): : 223 - 228