The visualization of hyperbolic patterns from invariant mapping method

被引:13
作者
Ouyang, Peichang [1 ,2 ]
Cheng, Dongsheng [1 ]
Cao, Yanhua [2 ]
Zhan, Xiaogen [2 ]
机构
[1] Sun Yat Sen Univ, Dept Sci Comp & Comp Applicat, Guangzhou, Guangdong, Peoples R China
[2] Jinggangshan Univ, Sch Math & Phys, Jian, Jiangxi, Peoples R China
来源
COMPUTERS & GRAPHICS-UK | 2012年 / 36卷 / 02期
关键词
Hyperbolic geometry; Symmetry group; Aesthetic pattern; Invariant mapping; Orbit trap; GENERATING ARTISTIC IMAGES; TRAP RENDERING METHODS; TESSELLATIONS; SYSTEMS;
D O I
10.1016/j.cag.2011.12.005
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A fast algorithm is developed to transform an arbitrary point into fundamental regions, which avoids the intrinsic difficulty of the infiniteness of hyperbolic groups. A flexible construction of invariant mappings, independent of the mapping form, is achieved by imposing the continuity of the mapping on its parameters. The fast algorithm combined with the resulting invariant mapping contributes to a simple and efficient method to generate various aesthetic hyperbolic patterns. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:92 / 100
页数:9
相关论文
共 21 条
[1]   Iterated function systems with symmetry in the hyperbolic plane [J].
Adcock, BM ;
Jones, KC ;
Reiter, CA ;
Vislocky, LM .
COMPUTERS & GRAPHICS-UK, 2000, 24 (05) :791-796
[2]   Two artistic orbit trap rendering methods for Newton M-set fractals [J].
Carlson, PW .
COMPUTERS & GRAPHICS-UK, 1999, 23 (06) :925-931
[3]   Automatic generation of symmetric IFSs contracted in the hyperbolic plane [J].
Chen, Ning ;
Hao, Ding ;
Tang, Ming .
CHAOS SOLITONS & FRACTALS, 2009, 41 (02) :829-842
[4]   Visual presentation of dynamic systems with hyperbolic planar symmetry [J].
Chen, Ning ;
Li, Zichuan ;
Jin, Yuanyuan .
CHAOS SOLITONS & FRACTALS, 2009, 40 (02) :621-634
[5]   Hyperbolic symmetries from dynamics [J].
Chung, KW ;
Chang, HSY ;
Wang, BN .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (02) :33-&
[6]   'Smaller and smaller' from dynamics [J].
Chung, KW ;
Chan, HSY ;
Wang, BN .
COMPUTERS & GRAPHICS, 1998, 22 (04) :527-536
[7]   Efficient generation of hyperbolic symmetries from dynamics [J].
Chung, KW ;
Chan, HSY ;
Wang, BN .
CHAOS SOLITONS & FRACTALS, 2002, 13 (06) :1175-1190
[8]   Tessellations with the modular group from dynamics [J].
Chung, KW ;
Chan, HSY ;
Wang, BN .
COMPUTERS & GRAPHICS, 1997, 21 (04) :523-534
[9]   Tessellations in three-dimensional hyperbolic space from dynamics and the quaternions [J].
Chung, KW ;
Chan, HSY ;
Wang, BN .
CHAOS SOLITONS & FRACTALS, 2001, 12 (07) :1181-1197
[10]  
Coxeter H.S.M., 1980, Generators and relations for discrete groups, V4th