Semiparametric estimation of conditional copulas

被引:44
作者
Abegaz, Fentaw [1 ,2 ,3 ]
Gijbels, Irene [1 ,2 ]
Veraverbeke, Noel [4 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Louvain, Belgium
[2] Katholieke Univ Leuven, Leuven Stat Res Ctr LStat, Louvain, Belgium
[3] Univ Addis Ababa, Addis Ababa, Ethiopia
[4] Univ Hasselt, Ctr Stat, Hasselt, Belgium
关键词
Asymptotic normality; Conditional copula; Consistency; Local polynomial fitting; Semiparametric estimation; ARCHIMEDEAN COPULAS; LIKELIHOOD; FAMILIES;
D O I
10.1016/j.jmva.2012.04.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The manner in which two random variables influence one another often depends on covariates. A way to model this dependence is via a conditional copula function. This paper contributes to the study of semiparametric estimation of conditional copulas by starting from a parametric copula function in which the parameter varies with a covariate, and leaving the marginals unspecified. Consequently, the unknown parts in the model are the parameter function and the unknown marginals. The authors use a local pseudo-likelihood with nonparametrically estimated marginals approximating the unknown parameter function locally by a polynomial. Under this general setting, they prove the consistency of the estimators of the parameter function as well as its derivatives; they also establish asymptotic normality. Furthermore, they derive an expression for the theoretical optimal bandwidth and discuss practical bandwidth selection. They illustrate the performance of the estimation procedure with data-driven bandwidth selection via a simulation study and a real-data case. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:43 / 73
页数:31
相关论文
共 30 条
[1]  
Acar E.F., 2010, THESIS U TORONTO CAN
[2]   Beyond simplified pair-copula constructions [J].
Acar, Elif F. ;
Genest, Christian ;
Neslehova, Johanna .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 110 :74-90
[3]   Dependence Calibration in Conditional Copulas: A Nonparametric Approach [J].
Acar, Elif F. ;
Craiu, Radu V. ;
Yao, Fang .
BIOMETRICS, 2011, 67 (02) :445-453
[4]   Local polynomial estimation in multiparameter likelihood models [J].
Aerts, M ;
Claeskens, G .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) :1536-1545
[5]  
[Anonymous], 1996, Local polynomial modelling and its applications
[6]  
[Anonymous], 1999, Local regression and likelihood
[7]  
Araujo A., 1980, CENTRAL LIMIT THEORE
[8]  
Fan J., 1995, J COMPUT GRAPH STAT, V4, P213, DOI DOI 10.2307/1390848
[9]   LOCAL POLYNOMIAL KERNEL REGRESSION FOR GENERALIZED LINEAR-MODELS AND QUASI-LIKELIHOOD FUNCTIONS [J].
FAN, JQ ;
HECKMAN, NE ;
WAND, MP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (429) :141-150
[10]   Local maximum likelihood estimation and inference [J].
Fan, JQ ;
Farmen, M ;
Gijbels, I .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 :591-608