Thermal radiation transmission and reflection properties of ceramic 3D photonic crystals

被引:34
作者
Lee, Hooi Sing [1 ]
Kubrin, Roman [2 ]
Zierold, Robert [3 ]
Petrov, Alexander Yu [1 ]
Nielsch, Kornelius [3 ]
Schneider, Gerold A. [2 ]
Eich, Manfred [1 ]
机构
[1] Hamburg Univ Technol, Inst Opt & Elect Mat, D-21073 Hamburg, Germany
[2] Hamburg Univ Technol, Inst Adv Ceram, D-21073 Hamburg, Germany
[3] Univ Hamburg, Inst Appl Phys, D-20355 Hamburg, Germany
关键词
BARRIER COATINGS; TURBINE APPLICATIONS; CONDUCTIVITY; FABRICATION; DEPOSITION; THICKNESS; OPALS; FILMS; GAP;
D O I
10.1364/JOSAB.29.000450
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The infrared (IR) transmission and reflection properties of the ceramic thermal barrier coatings have great implications on the overall performance of a component operated at high temperatures, where a significant amount of heat from external IR radiation will propagate through the coating toward the underlying substrate. A high-temperature photonic structure can be used to limit this radiation transport while operating at temperatures above 1000 degrees C. Herein, we present the concept of a broadband and angle-insensitive IR reflector, based on 3D photonic crystals (PhCs) that consists of a ceramic material with high thermal stability and low thermal conductivity. We numerically demonstrate that the multistack ceramic 3D PhCs can provide >80% of bi-hemispherical reflectance in the wavelength region of 1-5 mu m. (C) 2012 Optical Society of America
引用
收藏
页码:450 / 457
页数:8
相关论文
共 28 条
[1]  
Allen W. P., 2003, U.S. patent, Patent No. [0008170 A1, 0008170]
[2]   A Facile Method for the Preparation of Monodisperse Hollow Silica Spheres with Controlled Shell Thickness [J].
Cao, Shunsheng ;
Jin, Xin ;
Yuan, Xinhua ;
Wu, Weiwei ;
Hu, Jie ;
Sheng, Weichen .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2010, 48 (06) :1332-1338
[3]   Ceramic materials for thermal barrier coatings [J].
Cao, XQ ;
Vassen, R ;
Stoever, D .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (01) :1-10
[4]  
Eldridge J. I., 2008, INFRARED RAD PROPERT
[5]   Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures [J].
Eldridge, Jeffrey I. ;
Spuckler, Charles M. ;
Markham, James R. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (10) :2276-2285
[6]   Photonic band gaps in highly conformal inverse-opal based photonic crystals [J].
Gaillot, D ;
Yamashita, T ;
Summers, CJ .
PHYSICAL REVIEW B, 2005, 72 (20)
[7]   Opal-like photonic crystal with diamond lattice [J].
García-Santamaría, F ;
López, C ;
Meseguer, F ;
López-Tejeira, F ;
Sánchez-Dehesa, J ;
Miyazaki, HT .
APPLIED PHYSICS LETTERS, 2001, 79 (15) :2309-2311
[8]   High-speed fabrication of 3-dimensional colloidal photonic crystal films by slide coating of polymer microspheres with continuous feeding of colloidal suspension [J].
Gil, Seung Chul ;
Seo, Young Gon ;
Kim, Seulgi ;
Shin, Jinsub ;
Lee, Wonmok .
THIN SOLID FILMS, 2010, 518 (20) :5731-5736
[9]   Assembly of large-area, highly ordered, crack-free inverse opal films [J].
Hatton, Benjamin ;
Mishchenko, Lidiya ;
Davis, Stan ;
Sandhage, Kenneth H. ;
Aizenberg, Joanna .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (23) :10354-10359
[10]   EXISTENCE OF A PHOTONIC GAP IN PERIODIC DIELECTRIC STRUCTURES [J].
HO, KM ;
CHAN, CT ;
SOUKOULIS, CM .
PHYSICAL REVIEW LETTERS, 1990, 65 (25) :3152-3155