Parallel genetic algorithms on programmable graphics hardware

被引:0
作者
Yu, QZ [1 ]
Chen, CC
Pan, ZG
机构
[1] Zhejiang Univ, Coll Comp Sci, Hangzhou 310027, Peoples R China
[2] Fuzhou Univ, Spatial Informat Res Ctr Fujian Province, Fujian 350002, Peoples R China
来源
ADVANCES IN NATURAL COMPUTATION, PT 3, PROCEEDINGS | 2005年 / 3612卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Parallel genetic algorithms are usually implemented on parallel machines or distributed systems. This paper describes how fine-grained parallel genetic algorithms can be mapped to programmable graphics hardware found in commodity PC. Our approach stores chromosomes and their fitness values in texture memory on graphics card. Both fitness evaluation and genetic operations are implemented entirely with fragment programs executed on graphics processing unit in parallel. We demonstrate the effectiveness of our approach by comparing it with compatible software implementation. The presented approach allows us benefit from the advantages of parallel genetic algorithms on low-cost platform.
引用
收藏
页码:1051 / 1059
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[2]  
[Anonymous], 2004, GPU GEMS PROGRAMMING
[3]   Sparse matrix solvers on the GPU:: Conjugate gradients and multigrid [J].
Bolz, J ;
Farmer, I ;
Grinspun, E ;
Schröder, P .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03) :917-924
[4]  
FERNANDO R, 2003, CG TUTORIAL
[5]  
GOVINDARAJU NK, 2004, INT C MANAGEMENT DAT, P215
[6]  
HARRIS MJ, 2003, REAL TIME CLOUD SIMU
[7]   Nonlinear optimization framework for image-based modeling on programmable graphics hardware [J].
Hillesland, KE ;
Molinov, S ;
Grzeszczuk, R .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03) :925-934
[8]  
Holland J.H., 1992, CONTROL ARTIFICIAL I
[9]  
HOUSTON M, 2004, ACM WORKSH GEN PURP, P50
[10]  
Konfrst Z., 2004, Proceedings. 18th International Parallel and Distributed Processing Symposium