Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen

被引:160
作者
Lee, Changha [1 ]
Keenan, Christina R. [1 ]
Sedlak, David L. [1 ]
机构
[1] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
关键词
D O I
10.1021/es800317j
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the presence of oxygen, organic compounds can be oxidized by zerovalent iron or dissolved Fe(II). However, this process is not a very effective means of degrading contaminants because the yields of oxidants are usually low (i.e., typically less than 5% of the iron added is converted into oxidants capable of transforming organic compounds). The addition of polyoxometalate (POM) greatly increases the yield of oxidants in both systems. The mechanism of POM enhancement depends on the solution pH. Under acidic conditions, POM mediates the electron transfer from nanoparticulate zerovalent iron (nZVI or Fe(II) to oxygen, increasing the production of hydrogen peroxide, which is subsequently converted to hydroxyl radical through the Fenton reaction. At neutral pH values, iron forms a complex with POM, preventing iron precipitation on the nZVI surface and in bulk solution. At pH 7, the yield of oxidant approaches the theoretical maximum in the nZVI/O-2 and the Fe(II)/O-2 systems when POM is present, suggesting that coordination of iron by POM alters the mechanism of the Fenton reaction by converting the active oxidant from ferryl ion to hydroxyl radical. Comparable enhancements in oxidant yields are also observed when nZVI or Fe(II) is exposed to oxygen in the presence of silica-immobilized POM.
引用
收藏
页码:4921 / 4926
页数:6
相关论文
共 38 条
[1]  
[Anonymous], 1985, STANDARD POTENTIALS
[2]   PULSE RADIOLYTIC STUDY OF SITE OF OH RADICAL ATTACK ON ALIPHATIC ALCOHOLS IN AQUEOUS-SOLUTION [J].
ASMUS, KD ;
MOCKEL, H ;
HENGLEIN, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1973, 77 (10) :1218-1221
[3]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[4]  
DUCAN DC, 1997, J AM CHEM SOC, V119, P243
[5]   Oxidation of aqueous EDTA and associated organics and coprecipitation of inorganics by ambient iron-mediated aeration [J].
Englehardt, James D. ;
Meeroff, Daniel E. ;
Echegoyen, Luis ;
Deng, Yang ;
Raymo, Francisco M. ;
Shibata, Tomoyuki .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (01) :270-276
[6]   Oxidative transformation of contaminants using colloidal zero-valent iron [J].
Feitz, AJ ;
Joo, SH ;
Guan, J ;
Sun, Q ;
Sedlak, DL ;
Waite, TD .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2005, 265 (1-3) :88-94
[7]   HYDROGEN-ATOM ABSTRACTION FROM METHANOL BY OH [J].
HESS, WP ;
TULLY, FP .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (05) :1944-1947
[8]   Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction [J].
Hug, SJ ;
Leupin, O .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (12) :2734-2742
[9]   Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters [J].
Hug, SJ ;
Canonica, L ;
Wegelin, M ;
Gechter, D ;
Von Gunten, U .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (10) :2114-2121
[10]  
Jacobsen F, 1998, INT J CHEM KINET, V30, P215, DOI 10.1002/(SICI)1097-4601(1998)30:3<215::AID-KIN7>3.0.CO