On a terminal value problem for pseudoparabolic equations involving Riemann-Liouville fractional derivatives

被引:19
作者
Tran Bao Ngoc [1 ]
Zhou, Yong [2 ,3 ]
O'Regan, Donal [4 ]
Nguyen Huy Tuan [5 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau 999078, Peoples R China
[3] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[4] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[5] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
关键词
Riemann-Liouville fractional derivative; fractional diffusion equation; Well-posedness; Regularity estimates; GLOBAL EXISTENCE; BACKWARD PROBLEM; BLOW-UP; DIFFUSION EQUATION; TIME; CALCULUS;
D O I
10.1016/j.aml.2020.106373
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the terminal value problem for pseudo-parabolic equations with Riemann-Liouville fractional derivatives, from a given final value and we investigate the existence (and regularity) of mild solutions. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Invariant analysis of nonlinear fractional ordinary differential equations with Riemann-Liouville fractional derivative [J].
Bakkyaraj, T. ;
Sahadevan, R. .
NONLINEAR DYNAMICS, 2015, 80 (1-2) :447-455
[42]   Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations [J].
Jessada Tariboon ;
Sotiris K Ntouyas ;
Weerawat Sudsutad .
Boundary Value Problems, 2014
[43]   ON A NONLOCAL FRACTIONAL SOBOLEV EQUATION WITH RIEMANN-LIOUVILLE DERIVATIVE [J].
Van, Ho Thi Kim .
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 13 (03) :13-24
[44]   Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications [J].
Mohammed Al-Refai ;
Yuri Luchko .
Fractional Calculus and Applied Analysis, 2014, 17 :483-498
[45]   Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations [J].
Tariboon, Jessada ;
Ntouyas, Sotiris K. ;
Sudsutad, Weerawat .
BOUNDARY VALUE PROBLEMS, 2014,
[46]   ON APPROXIMATE CONTROLLABILITY FOR SYSTEMS OF FRACTIONAL EVOLUTION HEMIVARIATIONAL INEQUALITIES WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES [J].
Ceng, L. C. ;
Cho, S. Y. .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2022, 6 (04) :421-438
[47]   Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications [J].
Al-Refai, Mohammed ;
Luchko, Yuri .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) :483-498
[48]   Global existence and attractivity for Riemann-Liouville fractional semilinear evolution equations involving weakly singular integral inequalities [J].
Jiang, Caijing ;
Xu, Keji .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01)
[49]   The Cauchy type problem for interval-valued fractional differential equations with the Riemann-Liouville gH-fractional derivative [J].
Shen, Yonghong .
ADVANCES IN DIFFERENCE EQUATIONS, 2016,
[50]   Analysis and numerical solution of a Riemann-Liouville fractional derivative two-point boundary value problem [J].
Kopteva, Natalia ;
Stynes, Martin .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (01) :77-99