On a terminal value problem for pseudoparabolic equations involving Riemann-Liouville fractional derivatives

被引:19
|
作者
Tran Bao Ngoc [1 ]
Zhou, Yong [2 ,3 ]
O'Regan, Donal [4 ]
Nguyen Huy Tuan [5 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau 999078, Peoples R China
[3] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[4] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[5] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
关键词
Riemann-Liouville fractional derivative; fractional diffusion equation; Well-posedness; Regularity estimates; GLOBAL EXISTENCE; BACKWARD PROBLEM; BLOW-UP; DIFFUSION EQUATION; TIME; CALCULUS;
D O I
10.1016/j.aml.2020.106373
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the terminal value problem for pseudo-parabolic equations with Riemann-Liouville fractional derivatives, from a given final value and we investigate the existence (and regularity) of mild solutions. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] QUASILINEARIZATION METHOD FOR CAUSAL TERMINAL VALUE PROBLEMS INVOLVING RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES
    Yakar, Coskun
    Arslan, Mehmet
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [2] Solvability of BVPs for impulsive fractional differential equations involving the Riemann-Liouville fractional derivatives
    Liu, Yuji
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (01): : 79 - 108
  • [3] Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives
    Li Kexue
    Peng Jigen
    Jia Junxiong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (02) : 476 - 510
  • [4] The Nehari manifold for a boundary value problem involving Riemann-Liouville fractional derivative
    Saoudi, Kamel
    Agarwal, Praveen
    Kumam, Poom
    Ghanmi, Abdeljabbar
    Thounthong, Phatiphat
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [5] EXISTENCE OF POSITIVE SOLUTIONS FOR DIFFERENTIAL EQUATIONS INVOLVING RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Li, Yunhong
    Li, Yan
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2018, Mathematical Research Press (2018):
  • [6] Approximation with Riemann-Liouville fractional derivatives
    Anastassiou, George A.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (03): : 357 - 365
  • [7] Existence of the positive solutions for boundary value problems of mixed differential equations involving the Caputo and Riemann-Liouville fractional derivatives
    Liu, Yujing
    Yan, Chenguang
    Jiang, Weihua
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [8] ANALYSIS OF NONLINEAR FRACTIONAL DIFFUSION EQUATIONS WITH A RIEMANN-LIOUVILLE DERIVATIVE
    Ngoc, Tran bao
    Tuan, Nguyen Huy
    Sakthivel, R.
    O'Regan, Donal
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (02): : 439 - 455
  • [9] A Multiplicity Results for a Singular Problem Involving a Riemann-Liouville Fractional Derivative
    Ghanmi, A.
    Kratou, M.
    Saoudi, K.
    FILOMAT, 2018, 32 (02) : 653 - 669
  • [10] Existence of Solutions for Riemann-Liouville Fractional Dirichlet Boundary Value Problem
    Li, Zhiyu
    IRANIAN JOURNAL OF SCIENCE, 2025, 49 (01) : 161 - 167