Bounded solutions of parabolic equations in continuous function spaces

被引:8
作者
Liu, James [1 ]
N'Guerekata, Gaston [2 ]
Van Minh, Nguyen [3 ]
Phong, Vu Quoc [4 ]
机构
[1] James Madison Univ, Dept Math, Harrisonburg, VA 22807 USA
[2] Morehead State Univ, Dept Math, Baltimore, MD 21251 USA
[3] Univ W Georgia, Dept Math, Carrollton, GA 30118 USA
[4] Ohio Univ, Dept Math, Athens, OH 45701 USA
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2006年 / 49卷 / 03期
关键词
parabolic equation; continuous function space; complete second order evolution equation; mild solution;
D O I
10.1619/fesi.49.337
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence of bounded mild solutions to equations of the form u(1)(t) = Au(t) + f(t), where A generates a holomorphic semigroup that is not necessarily strongly continuous, and f is a bounded function. This problem arises when one considers a parabolic equation in spaces of continuous functions. The obtained results, that are stated in terms of spectral properties of the spectrum of A and the uniform spectrum of f, extend previous ones.
引用
收藏
页码:337 / 355
页数:19
相关论文
共 21 条
[1]  
[Anonymous], 1983, APPL MATH SCI, DOI DOI 10.1007/978-1-4612-5561-1
[2]   SPECTRAL PROPERTIES OF THE OPERATOR EQUATION AX+XB=Y [J].
ARENDT, W ;
RABIGER, F ;
SOUROUR, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1994, 45 (178) :133-149
[3]  
Arendt W., 2001, MONOGRAPHS MATH, V96
[4]   Almost automorphic solutions of evolution equations [J].
Diagana, T ;
Nguerekata, G ;
Nguyen, VM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (11) :3289-3298
[5]  
Favini A, 1995, FUNKC EKVACIOJ-SER I, V38, P81
[6]  
GUEREKATA N, 2001, ALMOST AUTOMORPHIC A
[7]  
Henry D., 1981, Geometric Theory of Semilinear Parabolic Partial Differential Equations, DOI [DOI 10.1007/BFB0089647, 10.1007/BFb0089647]
[8]  
Hino Y., 2002, ALMOST PERIODIC SOLU
[9]  
LEVITAN BM, 1982, ALMOST PERIODIC SOLU
[10]   A Massera type theorem for almost automorphic solutions of differential equations [J].
Liu, J ;
N'Guérékata, G ;
van Minh, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 299 (02) :587-599