GaAs microcavity exciton-polaritons in a trap

被引:28
|
作者
Kim, Na Young [1 ,2 ]
Lai, Chih-Wei [1 ,3 ]
Utsunomiya, Shoko [3 ]
Roumpos, Georgios [1 ]
Fraser, Michael [1 ]
Deng, Hui [1 ]
Byrnes, Tim [3 ]
Recher, Patrik [1 ]
Kumada, Norio [4 ]
Fujisawa, Toshimasa [4 ]
Yamamoto, Yoshihisa [1 ,3 ]
机构
[1] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA
[2] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan
[3] Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
[4] NTT Corp, Basic Res Labs, Kanagawa 2430198, Japan
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2008年 / 245卷 / 06期
关键词
D O I
10.1002/pssb.200777610
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We present a simple method to create an in-plane lateral potential in a semiconductor microcavity using a metal thin-film. Two types of potential are produced: a circular aperture and a one-dimensional (ID) periodic grating pattern. The amplitude of the potential induced by a 24 nm - 6 nm Au/Ti film. is on the order of a few hundreds of mu eV measured at 6-8 K. Since the metal layer makes the electromagnetic fields to be close to zero at the metal-semiconductor interface, the photon mode is confined more inside of the cavity. As a consequence, the effective cavity length is reduced under the metalfilm, and the corresponding cavity resonance is blue-shifted. Our experimental results are in a good agreement with theoretical estimates. In addition, by applying a DC electric voltage to the metal film, we are able to modify the quantum well exciton mode due to the quantum confined Stark effect, inducing a similar to 1 meV potential at similar to 20 kV/cm. Our method produces a controllable in-plane spatial trap potential for lower exciton-polaritons (LPs), which can be a building block towards 1D arrays and 2D lattices of LP condensates.
引用
收藏
页码:1076 / 1080
页数:5
相关论文
共 50 条
  • [31] EXCITON-POLARITONS IN SUPERLATTICES
    ANDREANI, LC
    PHYSICS LETTERS A, 1994, 192 (01) : 99 - 109
  • [32] Perovskite exciton-polaritons
    Zhang, Jun
    JOURNAL OF SEMICONDUCTORS, 2019, 40 (02)
  • [33] Perovskite exciton-polaritons
    Jun Zhang
    Journal of Semiconductors, 2019, 40 (02) : 5
  • [34] The behaviour of exciton-polaritons
    Deveaud-Pledran, Benoit
    NATURE PHOTONICS, 2012, 6 (04) : 205 - 205
  • [35] The behaviour of exciton-polaritons
    Butov, L. V.
    Kavokin, A. V.
    NATURE PHOTONICS, 2012, 6 (01) : 2 - 2
  • [36] Zitterbewegung of exciton-polaritons
    Sedov, E. S.
    Rubo, Y. G.
    Kavokin, A., V
    PHYSICAL REVIEW B, 2018, 97 (24)
  • [37] Exciton-polaritons in a ZnO-based microcavity: polarization dependence and nonlinear occupation
    Sturm, Chris
    Hiimer, Helena
    Schmidt-Grund, Ruediger
    Grundmann, Marius
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [38] Interaction of Strong Terahertz Pulses with Exciton-Polaritons in Quantum-Well Microcavity
    Lee, Yun-Shik
    Tomaino, J. L.
    Jameson, A. D.
    Khitrova, G.
    Gibbs, H. M.
    Stroech, A.
    Kira, M.
    Koch, S. W.
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [39] Valley polarization of exciton-polaritons in monolayer WSe2 in a tunable microcavity
    Krol, Mateusz
    Lekenta, Katarzyna
    Mirek, ARafat
    Lempicka, Karolina
    Stephan, Daniel
    Nogajewski, Karol
    Molas, Maciej R.
    Babinski, Adam
    Potemski, Marek
    Szczytko, Jacek
    Pietka, Barbara
    NANOSCALE, 2019, 11 (19) : 9574 - 9579
  • [40] Hybrid exciton-polaritons in a bad microcavity containing the organic and inorganic quantum wells
    Liu, YX
    Sun, CP
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (01) : 118 - 120