GaAs microcavity exciton-polaritons in a trap

被引:28
|
作者
Kim, Na Young [1 ,2 ]
Lai, Chih-Wei [1 ,3 ]
Utsunomiya, Shoko [3 ]
Roumpos, Georgios [1 ]
Fraser, Michael [1 ]
Deng, Hui [1 ]
Byrnes, Tim [3 ]
Recher, Patrik [1 ]
Kumada, Norio [4 ]
Fujisawa, Toshimasa [4 ]
Yamamoto, Yoshihisa [1 ,3 ]
机构
[1] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA
[2] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan
[3] Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
[4] NTT Corp, Basic Res Labs, Kanagawa 2430198, Japan
来源
关键词
D O I
10.1002/pssb.200777610
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We present a simple method to create an in-plane lateral potential in a semiconductor microcavity using a metal thin-film. Two types of potential are produced: a circular aperture and a one-dimensional (ID) periodic grating pattern. The amplitude of the potential induced by a 24 nm - 6 nm Au/Ti film. is on the order of a few hundreds of mu eV measured at 6-8 K. Since the metal layer makes the electromagnetic fields to be close to zero at the metal-semiconductor interface, the photon mode is confined more inside of the cavity. As a consequence, the effective cavity length is reduced under the metalfilm, and the corresponding cavity resonance is blue-shifted. Our experimental results are in a good agreement with theoretical estimates. In addition, by applying a DC electric voltage to the metal film, we are able to modify the quantum well exciton mode due to the quantum confined Stark effect, inducing a similar to 1 meV potential at similar to 20 kV/cm. Our method produces a controllable in-plane spatial trap potential for lower exciton-polaritons (LPs), which can be a building block towards 1D arrays and 2D lattices of LP condensates.
引用
收藏
页码:1076 / 1080
页数:5
相关论文
共 50 条
  • [1] Nanophotonics of microcavity exciton-polaritons
    Luo, Song
    Zhou, Hang
    Zhang, Long
    Chen, Zhanghai
    APPLIED PHYSICS REVIEWS, 2023, 10 (01):
  • [2] Nonlinear spectroscopy of exciton-polaritons in a GaAs-based microcavity
    Schmutzler, Johannes
    Assmann, Marc
    Czerniuk, Thomas
    Kamp, Martin
    Schneider, Christian
    Hoefling, Sven
    Bayer, Manfred
    PHYSICAL REVIEW B, 2014, 90 (07):
  • [3] Exciton-polaritons in ZnO microcavity resonators
    Schmidt-Grund, R.
    Sturm, C.
    Hilmer, H.
    Sellmann, J.
    Czekalla, C.
    Rheinlaender, B.
    Lenzner, J.
    Hochmuth, H.
    Lorenz, M.
    Grundmann, M.
    PHYSICS OF SEMICONDUCTORS, 2009, 1199 : 175 - 176
  • [4] Exciton-polaritons in a crystalline anisotropic organic microcavity
    Litinskaya, M
    Reineker, P
    Agranovich, VM
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2004, 201 (04): : 646 - 654
  • [5] Microscopic optical anisotropy of exciton-polaritons in a GaAs-based semiconductor microcavity
    Lastras-Martinez, L. F.
    Cerda-Mendez, E.
    Ulloa-Castillo, N.
    Herrera-Jasso, R.
    Rodriguez-Tapia, L. E.
    Ruiz-Cigarrillo, O.
    Castro-Garcia, R.
    Biermann, K.
    Santos, P. V.
    PHYSICAL REVIEW B, 2017, 96 (23)
  • [6] Exciton-polaritons in a laterally patterned semiconductor microcavity
    Fenniche, Hela
    D'Andrea, Andrea
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 279
  • [7] Grating induced effects on microcavity exciton-polaritons
    Pilozzi, L
    D'Andrea, A
    MICROELECTRONIC ENGINEERING, 2000, 51-2 : 211 - 218
  • [8] Exciton-polaritons in a laterally patterned semiconductor microcavity
    Fenniche, Hela
    D'Andrea, Andrea
    Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 279
  • [9] Enhanced Scattering between Electrons and Exciton-Polaritons in a Microcavity
    Li, Guangyao
    Bleu, Olivier
    Parish, Meera M.
    Levinsen, Jesper
    PHYSICAL REVIEW LETTERS, 2021, 126 (19)
  • [10] Drift and diffusion of exciton-polaritons in a graded quantum microcavity
    Sermage, B
    Malpuech, G
    Kavokin, AV
    Thierry-Mieg, V
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2001, 183 (01): : 23 - 27