A dual-mode rechargeable lithium-bromine/oxygen fuel cell

被引:17
作者
Bai, Peng [1 ]
Viswanathan, Venkatasubramanian [1 ,3 ]
Bazant, Martin Z. [1 ,2 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15217 USA
关键词
LI-ION; BATTERY; CATHODE; METAL; VEHICLE; CARBON;
D O I
10.1039/c5ta03335g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to meet the versatile power requirements of autonomous underwater vehicles (AUV), we propose a rechargeable lithium-bromine/seawater fuel cell with a protected lithium metal anode to provide high specific energy at either low-power mode with seawater (oxygen) or high-power mode with bromine catholytes. The proof-of-concept fuel cell with a flat catalyst-free graphite electrode can discharge at 3 mW cm(-2) with seawater, and 9 mW cm(-2) with dilute bromine catholytes. The fuel cell can also be recharged with LiBr catholytes efficiently to recover the lithium metal anode. Scanning electron microscopy images reveal that both the organic electrolyte and the bromine electrolyte corrode the solid electrolyte plate quickly, leading to nanoporous pathways that can percolate through the plate, thus limiting the cell performance and lifetime. With improved solid electrolytes or membraneless flow designs, the dual-mode lithium-bromine/oxygen system could enable not only AUV but also land-based electric vehicles, by providing a critical high-power mode to high-energy-density (but otherwise low-power) lithium-air batteries.
引用
收藏
页码:14165 / 14172
页数:8
相关论文
共 46 条
[1]  
Bhattacharyya S., 2014, CONTROL COMPACT TETH
[2]   Membrane-less hydrogen bromine flow battery [J].
Braff, William A. ;
Bazant, Martin Z. ;
Buie, Cullen R. .
NATURE COMMUNICATIONS, 2013, 4
[3]   Tracking Hydrocarbon Plume Transport and Biodegradation at Deepwater Horizon [J].
Camilli, Richard ;
Reddy, Christopher M. ;
Yoerger, Dana R. ;
Van Mooy, Benjamin A. S. ;
Jakuba, Michael V. ;
Kinsey, James C. ;
McIntyre, Cameron P. ;
Sylva, Sean P. ;
Maloney, James V. .
SCIENCE, 2010, 330 (6001) :201-204
[4]   Rechargeable Li//Br battery: a promising platform for post lithium ion batteries [J].
Chang, Zheng ;
Wang, Xujiong ;
Yang, Yaqiong ;
Gao, Jie ;
Li, Minxia ;
Liu, Lili ;
Wu, Yuping .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (45) :19444-19450
[5]   High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage (vol 159, pg A1806, 2012) [J].
Cho, Kyu Taek ;
Ridgway, Paul ;
Weber, Adam Z. ;
Haussener, Sophia ;
Battaglia, Vincent ;
Srinivasan, Venkat .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (08) :X9-X9
[6]   Seaglider: A long-range autonomous underwater vehicle for oceanographic research [J].
Eriksen, CC ;
Osse, TJ ;
Light, RD ;
Wen, T ;
Lehman, TW ;
Sabin, PL ;
Ballard, JW ;
Chiodi, AM .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2001, 26 (04) :424-436
[7]   CURRENT CONCEPTS The Gulf Oil Spill [J].
Goldstein, Bernard D. ;
Osofsky, Howard J. ;
Lichtveld, Maureen Y. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 364 (14) :1334-1348
[8]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[9]  
Hamlen R. P., 1987, ALUMINUM HYDROGEN PE
[10]   Study on lithium/air secondary batteries-Stability of NASICON-type lithium ion conducting glass-ceramics with water [J].
Hasegawa, Satoshi ;
Imanishi, Nobuyuki ;
Zhang, Tao ;
Xie, Jian ;
Hirano, Atsushi ;
Takeda, Yasuo ;
Yamamoto, Osamu .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :371-377