Comparison of Semantic Segmentation Methods on Renal Ultrasounds Images

被引:0
作者
Zhang, Qimin [1 ]
Wang, Qiang [1 ]
机构
[1] Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150001, Peoples R China
来源
2022 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2022) | 2022年
基金
中国国家自然科学基金;
关键词
Kidney disease detection; Image segmentation; Deep learning; Data augmentation; Semantic segmentation network;
D O I
10.1109/I2MTC48687.2022.9806525
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
There are many people with chronic kidney disease in China, so manual segmentation can not meet the huge social needs. Due to the ability to accurately segment the images, deep learning methods can be used for the detection of kidney diseases. In this paper, a total of 881 renal ultrasound images were collected and labelled. Four semantic segmentation networks, including FCN, U-Net, SegNet and Deeplab were used to segment renal ultrasound images. In order to measure the segmentation effect of different networks, two common indicators, PA and IoU, were used to evaluate the results. The results showed that all the four semantic segmentation networks achieved good results in renal ultrasound image segmentation, among which Deeplab had the best effect on the test set, with PA reaching 99.14% and IoU reaching 0.8219.
引用
收藏
页数:5
相关论文
共 18 条
  • [1] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [2] Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017
    Bikbov, Boris
    Purcell, Carrie
    Levey, Andrew S.
    Smith, Mari
    Abdoli, Amir
    Abebe, Molla
    Adebayo, Oladimeji M.
    Afarideh, Mohsen
    Agarwal, Sanjay Kumar
    Agudelo-Botero, Marcela
    Ahmadian, Elham
    Al-Aly, Ziyad
    Alipour, Vahid
    Almasi-Hashiani, Amir
    Al-Raddadi, Rajaa M.
    Alvis-Guzman, Nelson
    Amini, Saeed
    Andrei, Tudorel
    Andrei, Catalina Liliana
    Andualem, Zewudu
    Anjomshoa, Mina
    Arabloo, Jalal
    Ashagre, Alebachew Fasil
    Asmelash, Daniel
    Ataro, Zerihun
    Atout, Maha Moh'd Wahbi
    Ayanore, Martin Amogre
    Badawi, Alaa
    Bakhtiari, Ahad
    Ballew, Shoshana H.
    Balouchi, Abbas
    Banach, Maciej
    Barquera, Simon
    Basu, Sanjay
    Bayih, Mulat Tirfie
    Bedi, Neeraj
    Bello, Aminu K.
    Bensenor, Isabela M.
    Bijani, Ali
    Boloor, Archith
    Borzi, Antonio M.
    Camera, Luis Alberto
    Carrero, Juan J.
    Carvalho, Felix
    Castro, Franz
    Catala-Lopez, Ferran
    Chang, Alex R.
    Chin, Ken Lee
    Chung, Sheng-Chia
    Cirillo, Massimo
    [J]. LANCET, 2020, 395 (10225) : 709 - 733
  • [3] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [4] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [5] Transfer Incremental Learning Using Data Augmentation
    Hacene, Ghouthi Boukli
    Gripon, Vincent
    Farrugia, Nicolas
    Arzel, Matthieu
    Jezequel, Michel
    [J]. APPLIED SCIENCES-BASEL, 2018, 8 (12):
  • [6] He T, 2020, MEASUREMENT, P152
  • [7] Measurement of the Mechanical Properties of the Human Kidney
    Karimi, A.
    Shojaei, A.
    [J]. IRBM, 2017, 38 (05) : 292 - 297
  • [8] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [9] Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
  • [10] Data Augmentation for Brain-Tumor Segmentation: A Review
    Nalepa, Jakub
    Marcinkiewicz, Michal
    Kawulok, Michal
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2019, 13