Structural basis for methylphosphonate biosynthesis

被引:38
作者
Born, David A. [1 ,2 ]
Ulrich, Emily C. [3 ,4 ]
Ju, Kou-San [4 ,5 ,6 ]
Peck, Spencer C. [3 ,4 ,10 ]
van der Donk, Wilfred A. [3 ,4 ,7 ]
Drennan, Catherine L. [2 ,8 ,9 ]
机构
[1] Harvard Univ, Grad Program Biophys, Cambridge, MA 02138 USA
[2] MIT, Dept Biol, Cambridge, MA USA
[3] Univ Illinois, Dept Chem, Urbana, IL USA
[4] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL USA
[5] Ohio State Univ, Dept Microbiol, 484 W 12th Ave, Columbus, OH 43210 USA
[6] Ohio State Univ, Div Med Chem & Pharmacognosy, Columbus, OH 43210 USA
[7] Univ Illinois, Howard Hughes Med Inst, Urbana, IL USA
[8] MIT, Dept Chem, Cambridge, MA 02139 USA
[9] MIT, Howard Hughes Med Inst, Cambridge, MA USA
[10] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
METHANE; CLEAVAGE; OCEAN;
D O I
10.1126/science.aao3435
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Methylphosphonate synthase (MPnS) produces methylphosphonate, a metabolic precursor to methane in the upper ocean. Here, we determine a 2.35-angstrom resolution structure of MPnS and discover that it has an unusual 2-histidine-1-glutamine iron-coordinating triad. We further solve the structure of a related enzyme, hydroxyethylphosphonate dioxygenase from Streptomyces albus (SaHEPD), and find that it displays the same motif. SaHEPD can be converted into an MPnS by mutation of glutamine-adjacent residues, identifying the molecular requirements for methylphosphonate synthesis. Using these sequence markers, we find numerous putative MPnSs in marine microbiomes and confirm that MPnS is present in the abundant Pelagibacter ubique. The ubiquity of MPnS-containing microbes supports the proposal that methylphosphonate is a source of methane in the upper, aerobic ocean, where phosphorus-starved microbes catabolize methylphosphonate for its phosphorus.
引用
收藏
页码:1336 / 1338
页数:3
相关论文
共 20 条
  • [1] Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria
    Carini, Paul
    White, Angelicque E.
    Campbell, Emily O.
    Giovannoni, Stephen J.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis
    Cicchillo, Robert M.
    Zhang, Houjin
    Blodgett, Joshua A. V.
    Whitteck, John T.
    Li, Gongyong
    Nair, Satish K.
    van der Donk, Wilfred A.
    Metcalf, William W.
    [J]. NATURE, 2009, 459 (7248) : 871 - U10
  • [3] Mechanistic Investigation of Methylphosphonate Synthase, a Non-Heme Iron-Dependent Oxygenase
    Cooke, Heather A.
    Peck, Spencer C.
    Evans, Bradley S.
    van der Donk, Wilfred A.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (38) : 15660 - 15663
  • [4] DAUGHTON CG, 1979, FEMS MICROBIOL LETT, V5, P91, DOI 10.1111/j.1574-6968.1979.tb03254.x
  • [5] DeLano WL., 2002, PYMOL MOL GRAPHICS S
  • [6] Structural insight into antibiotic fosfomycin biosynthesis by a mononuclear iron enzyme
    Higgins, LJ
    Yan, F
    Liu, PH
    Liu, HW
    Drennan, CL
    [J]. NATURE, 2005, 437 (7060) : 838 - 844
  • [7] Methane production, consumption, and air-sea exchange in the open ocean: An evaluation based on carbon isotopic ratios
    Holmes, ME
    Sansone, FJ
    Rust, TM
    Popp, BN
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2000, 14 (01) : 1 - 10
  • [8] Aerobic production of methane in the sea
    Karl, David M.
    Beversdorf, Lucas
    Bjoerkman, Karin M.
    Church, Matthew J.
    Martinez, Asuncion
    DeLong, Edward F.
    [J]. NATURE GEOSCIENCE, 2008, 1 (07) : 473 - 478
  • [9] PRODUCTION AND TRANSPORT OF METHANE IN OCEANIC PARTICULATE ORGANIC-MATTER
    KARL, DM
    TILBROOK, BD
    [J]. NATURE, 1994, 368 (6473) : 732 - 734
  • [10] Archaeal dominance in the mesopelagic zone of the Pacific Ocean
    Karner, MB
    DeLong, EF
    Karl, DM
    [J]. NATURE, 2001, 409 (6819) : 507 - 510