Uniqueness and stability in multidimensional hyperbolic inverse problems

被引:143
作者
Yamamoto, M [1 ]
机构
[1] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 153, Japan
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 1999年 / 78卷 / 01期
关键词
D O I
10.1016/S0021-7824(99)80010-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under a weak regularity assumption, we prove the uniqueness in multidimensional hyperbolic inverse problems with a single measurement. Moreover we show that our uniqueness results yield the best possible Lipschitz stability in L-2-space in the inverse problems by means of the exact observability inequality. (C) Elsevier, Paris.
引用
收藏
页码:65 / 98
页数:34
相关论文
共 28 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
[Anonymous], 1993, APPL ANAL
[3]  
[Anonymous], 1986, AM MATH SOC, DOI DOI 10.1090/S0894-0347-1992-1124979-1
[4]  
[Anonymous], 1971, FUNCTIONAL ANAL, DOI DOI 10.1007/978-3-662-00781-5
[5]   SHARP SUFFICIENT CONDITIONS FOR THE OBSERVATION, CONTROL, AND STABILIZATION OF WAVES FROM THE BOUNDARY [J].
BARDOS, C ;
LEBEAU, G ;
RAUCH, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (05) :1024-1065
[6]  
Bukhgeim A. L., 1981, SOV MATH DOKL, V24, P244
[7]  
HO LF, 1986, CR ACAD SCI I-MATH, V302, P443
[8]   UNIQUENESS AND STABILITY IN MULTIDIMENSIONAL INVERSE PROBLEMS [J].
ISAKOV, V .
INVERSE PROBLEMS, 1993, 9 (06) :579-621
[9]   CARLEMAN TYPE ESTIMATES IN AN ANISOTROPIC CASE AND APPLICATIONS [J].
ISAKOV, V .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 105 (02) :217-238
[10]  
Khaidarov A., 1987, Math. USSR Sb, V58, P267, DOI [10.1070/SM1987v058n01ABEH003103, DOI 10.1070/SM1987V058N01ABEH003103]