Positivity of quiver coefficients through Thom Polynomials

被引:10
作者
Buch, AS
Fehér, LM
Rimányi, R
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
[2] Eotvos Lorand Univ, Dept Anal, Budapest, Hungary
[3] Aarhus Univ, Inst Matemat, DK-8000 Aarhus, Denmark
关键词
degeneracy loci; quiver coefficients; Thom polynomials;
D O I
10.1016/j.aim.2004.10.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the Thom Polynomial theory developed by Feher and Rimanyi to prove the component formula for quiver varieties conjectured by Knutson, Miller, and Shimozono. This formula expresses the cohomology class of a quiver variety as a sum of products of Schubert polynomials indexed by minimal lace diagrams, and implies that the quiver coefficients of Buch and Fulton are non-negative. We also apply our methods to give a new proof of the component formula from the Grobner degeneration of quiver varieties, and to give generating moves for the KMS-factorizations that form the index set in K-theoretic versions of the component formula. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:306 / 320
页数:15
相关论文
共 19 条
[1]  
Abeasis S., 1980, B UN MAT ITAL S, V2, P157
[2]  
[Anonymous], 1985, USPEKHI MAT NAUK
[3]   Specializations of grothendieck polynomials [J].
Buch, AS ;
Rimányi, R .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (01) :1-4
[4]   Grothendieck classes of quiver varieties [J].
Buch, AS .
DUKE MATHEMATICAL JOURNAL, 2002, 115 (01) :75-103
[5]   Chern class formulas for quiver varieties [J].
Buch, AS ;
Fulton, W .
INVENTIONES MATHEMATICAE, 1999, 135 (03) :665-687
[6]  
BUCH AS, IN PRESS J AM MATH S
[7]   BALANCED TABLEAUX [J].
EDELMAN, P ;
GREENE, C .
ADVANCES IN MATHEMATICS, 1987, 63 (01) :42-99
[8]  
Fehér L, 2002, DUKE MATH J, V114, P193
[9]  
Feher L, 2003, Cent. Eur. J. Math, V4, P418
[10]  
FEHER LM, 2004, CONT MATH, V354