Numerical modeling of active plasmonic metamaterials

被引:5
|
作者
Prokopeva, Ludmila J. [1 ,2 ]
Trieschmann, Jan [1 ,3 ]
Klar, Thomas A. [4 ]
Kildishev, Alexander V. [1 ]
机构
[1] Purdue Univ, Birck Nanotechnol Ctr, Sch ECE, 1205 W State St, W Lafayette, IN 47907 USA
[2] Russian Acad Sci, Inst Computat Technol, Novosibirsk 630090, Russia
[3] Ruhr Univ Bochum, Inst Theoret Elect Engn, D-44801 Bochum, Germany
[4] Johannes Kepler Univ Linz, Inst Phys Appl, Linz 4040, Austria
来源
关键词
optical gain; dispersion; critical points; active metamaterials; FDTD; DISPERSION; STABILITY;
D O I
10.1117/12.898619
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper addresses numerical time-domain methods for modeling of active and passive dispersive media, needed for simulations of plasmonic metamaterials. The proposed algorithms differ from published results, as our models employ more general formalisms and are more computationally efficient. The frequency dispersion of the permittivity is considered as an arbitrary Pade approximant, its numerical implementation is more universal and effective for all known ADE and RC methods. The gain model is implemented for an arbitrary topology of transitions with the ADE method. The proposed dispersion models are in a good fit with spectroscopic data and are included into a database of optical materials at nanohub.org.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Liquid crystal plasmonic metamaterials
    Scharf, Toralf
    Dintinger, Jose
    Tang, Bai-Jia
    Mehl, Georg H.
    Zeng, Xianbing
    Ungar, Goran
    Muehlig, Stefan
    Kienzler, Tobias
    Rockstuhl, Carsten
    EMERGING LIQUID CRYSTAL TECHNOLOGIES VIII, 2013, 8642
  • [42] Nonlinear optics and optomechanics with plasmonic metamaterials
    Nichols, Luke
    Stefaniuk, Tomasz
    Sartorello, Giovanni
    Marino, Giuseppe
    Krasavin, Alexey V.
    Fortuno, Francisco Rodriguez
    Dickson, Wayne
    Zayats, Anatoly V.
    2016 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2016,
  • [43] Chiral Plasmonic Metamaterials with Tunable Chirality
    Guan, Yuduo
    Wang, Zengyao
    Ai, Bin
    Chen, Chong
    Zhang, Wei
    Wang, Yu
    Zhang, Gang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (44) : 50192 - 50202
  • [44] Low-Loss Plasmonic Metamaterials
    Boltasseva, Alexandra
    Atwater, Harry A.
    SCIENCE, 2011, 331 (6015) : 290 - 291
  • [45] Optical Spectroscopy of Hyperbolic Plasmonic Metamaterials
    Pomozov, A. R.
    Novikov, V. B.
    Kolmychek, I. A.
    Leontiev, A. P.
    Napolskii, K. S.
    Murzina, T. V.
    2018 INTERNATIONAL CONFERENCE LASER OPTICS (ICLO 2018), 2018, : 339 - 339
  • [46] Magnifying superlens based on plasmonic metamaterials
    Smolyaninov, Igor I.
    Hung, Yu-Ju
    Davis, Christopher C.
    2007 INTERNATIONAL SEMICONDUCTOR DEVICE RESEARCH SYMPOSIUM, VOLS 1 AND 2, 2007, : 605 - 605
  • [47] Plasmonic absorption properties of bimetallic metamaterials
    Atmatzakis, Evangelos
    Papasimakis, Nikitas
    Zheludev, Nikolay I.
    MICROELECTRONIC ENGINEERING, 2017, 172 : 30 - 34
  • [48] Fractal plasmonic metamaterials for subwavelength imaging
    Huang, Xueqin
    Xiao, Shiyi
    Ye, Dexin
    Huangfu, Jiangtao
    Wang, Zhiyu
    Ran, Lixin
    Zhou, Lei
    OPTICS EXPRESS, 2010, 18 (10): : 10377 - 10387
  • [49] Anisotropic plasmonic metamaterials for nanophotonic applications
    Dickson, Wayne
    Wurtz, Gregory A.
    Zayats, Anatoly V.
    2014 XXXITH URSI GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM (URSI GASS), 2014,
  • [50] Nonlocal optics of plasmonic nanowire metamaterials
    Wells, Brian M.
    Zayats, Anatoly V.
    Podolskiy, Viktor A.
    PHYSICAL REVIEW B, 2014, 89 (03)