Numerical modeling of active plasmonic metamaterials

被引:5
|
作者
Prokopeva, Ludmila J. [1 ,2 ]
Trieschmann, Jan [1 ,3 ]
Klar, Thomas A. [4 ]
Kildishev, Alexander V. [1 ]
机构
[1] Purdue Univ, Birck Nanotechnol Ctr, Sch ECE, 1205 W State St, W Lafayette, IN 47907 USA
[2] Russian Acad Sci, Inst Computat Technol, Novosibirsk 630090, Russia
[3] Ruhr Univ Bochum, Inst Theoret Elect Engn, D-44801 Bochum, Germany
[4] Johannes Kepler Univ Linz, Inst Phys Appl, Linz 4040, Austria
来源
关键词
optical gain; dispersion; critical points; active metamaterials; FDTD; DISPERSION; STABILITY;
D O I
10.1117/12.898619
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper addresses numerical time-domain methods for modeling of active and passive dispersive media, needed for simulations of plasmonic metamaterials. The proposed algorithms differ from published results, as our models employ more general formalisms and are more computationally efficient. The frequency dispersion of the permittivity is considered as an arbitrary Pade approximant, its numerical implementation is more universal and effective for all known ADE and RC methods. The gain model is implemented for an arbitrary topology of transitions with the ADE method. The proposed dispersion models are in a good fit with spectroscopic data and are included into a database of optical materials at nanohub.org.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Theoretical and Numerical Modeling of Acoustic Metamaterials for Aeroacoustic Applications
    Iemma, Umberto
    AEROSPACE, 2016, 3 (02):
  • [22] Global Modeling of Active Terahertz Plasmonic Devices
    Khorrami, Mohammad Ali
    El-Ghazaly, Samir
    Naseem, Hameed
    Yu, Shui-Qing
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2014, 4 (01) : 101 - 109
  • [23] Analytical qualitative modeling of passive and active metamaterials [Invited]
    Chipouline, Arkadi
    Kueppers, Franko
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2017, 34 (08) : 1597 - 1623
  • [24] Hybrid Newmark-conformal FDTD modeling of thin spoof plasmonic metamaterials
    Fujita, Kazuhiro
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 390 - 410
  • [25] Homogenization of Plasmonic Nanocluster Metamaterials
    Vallecchi, A.
    Sozio, V.
    Albani, M.
    Capolino, F.
    2013 USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2013, : 131 - 131
  • [26] Plasmonic nanorod metamaterials for biosensing
    A. V. Kabashin
    P. Evans
    S. Pastkovsky
    W. Hendren
    G. A. Wurtz
    R. Atkinson
    R. Pollard
    V. A. Podolskiy
    A. V. Zayats
    Nature Materials, 2009, 8 : 867 - 871
  • [27] Functional metamaterials and plasmonic structures
    Neshev, Dragomir N.
    2012 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2012, : 7 - 8
  • [28] Nonlinear Optics of Plasmonic Metamaterials
    Zayats, Anatoly V.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [29] Electrochemical restructuring of plasmonic metamaterials
    Ruther, M.
    Shao, L. -H.
    Linden, S.
    Weissmueller, J.
    Wegener, M.
    APPLIED PHYSICS LETTERS, 2011, 98 (01)
  • [30] Plasmonic nanorod metamaterials for biosensing
    Kabashin, A. V.
    Evans, P.
    Pastkovsky, S.
    Hendren, W.
    Wurtz, G. A.
    Atkinson, R.
    Pollard, R.
    Podolskiy, V. A.
    Zayats, A. V.
    NATURE MATERIALS, 2009, 8 (11) : 867 - 871