Numerical modeling of active plasmonic metamaterials

被引:5
|
作者
Prokopeva, Ludmila J. [1 ,2 ]
Trieschmann, Jan [1 ,3 ]
Klar, Thomas A. [4 ]
Kildishev, Alexander V. [1 ]
机构
[1] Purdue Univ, Birck Nanotechnol Ctr, Sch ECE, 1205 W State St, W Lafayette, IN 47907 USA
[2] Russian Acad Sci, Inst Computat Technol, Novosibirsk 630090, Russia
[3] Ruhr Univ Bochum, Inst Theoret Elect Engn, D-44801 Bochum, Germany
[4] Johannes Kepler Univ Linz, Inst Phys Appl, Linz 4040, Austria
来源
关键词
optical gain; dispersion; critical points; active metamaterials; FDTD; DISPERSION; STABILITY;
D O I
10.1117/12.898619
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper addresses numerical time-domain methods for modeling of active and passive dispersive media, needed for simulations of plasmonic metamaterials. The proposed algorithms differ from published results, as our models employ more general formalisms and are more computationally efficient. The frequency dispersion of the permittivity is considered as an arbitrary Pade approximant, its numerical implementation is more universal and effective for all known ADE and RC methods. The gain model is implemented for an arbitrary topology of transitions with the ADE method. The proposed dispersion models are in a good fit with spectroscopic data and are included into a database of optical materials at nanohub.org.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Active plasmonic and metamaterials and devices
    Kim, Seong-Ku
    Sylvain, Nathan
    Benight, Stephanie J.
    Kosilkin, Ilya
    Bale, Denise H.
    Robinson, Bruce H.
    Park, Junghun
    Geary, Kevin
    Jen, Alex K. -Y.
    Steier, William H.
    Fetterman, Harold R.
    Berini, Pierre
    Dalton, Larry R.
    METAMATERIALS: FUNDAMENTALS AND APPLICATIONS III, 2010, 7754
  • [2] Active plasmonic devices and optical metamaterials
    Aydin, Koray
    Burgos, Stanley
    Pryce, Imogen M.
    Dicken, Matthew J.
    Dionne, Jennifer A.
    Diest, Kenneth
    de Waele, Rene
    Polman, Albert
    Atwater, Harry. A.
    2009 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1AND 2, 2009, : 92 - +
  • [3] Electrodynamic Modeling of Quantum Dot Luminescence in Plasmonic Metamaterials
    Fang, Ming
    Huang, Zhixiang
    Koschny, Thomas
    Soukoulis, Costas M.
    ACS PHOTONICS, 2016, 3 (04): : 558 - 563
  • [4] Numerical studies on absorption characteristics of plasmonic metamaterials with an array of nanoshells
    Wang, Zhaolong
    Quan, Xiaojun
    Zhang, Zhuomin
    Cheng, Ping
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2015, 68 : 172 - 177
  • [5] Plasmonic metamaterials
    Tanaka, Takuo
    IEICE ELECTRONICS EXPRESS, 2012, 9 (02): : 34 - 50
  • [6] Plasmonic metamaterials
    Yao, Kan
    Liu, Yongmin
    NANOTECHNOLOGY REVIEWS, 2014, 3 (02) : 177 - 210
  • [7] Digital coding Fano resonance based on active plasmonic metamaterials
    Xu, Jian
    Li, Qiao Yu
    Dai, Li Hui
    Zhou, Yong Jin
    APPLIED OPTICS, 2023, 62 (14) : 3581 - 3588
  • [8] A high-Q plasmonic resonator using active metamaterials
    Cai, Jing
    Zhou, Yong Jin
    Li, Qiao Yu
    2018 CROSS STRAIT QUAD-REGIONAL RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE (CSQRWC), 2018,
  • [9] Slow and Stopped-Light Lasing in Active Plasmonic Metamaterials
    Tsakmakidis, Kosmas L.
    Hess, Ortwin
    2012 14TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON 2012), 2012,
  • [10] Graphene Active Plasmonic Metamaterials for New Types of Terahertz Lasers
    Otsuji, Taiichi
    Watanabe, Takayuki
    Satou, Akira
    Popov, Vyacheslav
    Ryzhii, Victor
    TERAHERTZ PHYSICS, DEVICES, AND SYSTEMS VII: ADVANCED APPLICATIONS IN INDUSTRY AND DEFENSE, 2013, 8716