Properties of compacton-anticompacton collisions

被引:9
作者
Cardenas, Andres [1 ,2 ]
Mihaila, Bogdan [1 ]
Cooper, Fred [3 ,4 ,5 ]
Saxena, Avadh [4 ,5 ]
机构
[1] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA
[2] NYU, Dept Phys, New York, NY 10003 USA
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
[4] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
关键词
SOLITON-SOLUTIONS; WAVES; EQUATIONS; LINES; KINKS;
D O I
10.1103/PhysRevE.83.066705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the properties of compacton-anticompacton collision processes. We compare and contrast results for the case of compacton-anticompacton solutions of the K(l, p) Rosenau-Hyman (RH) equation for l = p = 2, with compacton-anticompacton solutions of the L(l, p) Cooper-Shepard-Sodano (CSS) equation for p = 1 and l = 3. This study is performed using a Pade discretization of the RH and CSS equations. We find a significant difference in the behavior of compacton-anticompacton scattering. For the CSS equation, the scattering can be interpreted as "annihilation" as the wake left behind dissolves over time. In the RH equation, the numerical evidence is that multiple shocks form after the collision, which eventually lead to "blowup" of the resulting wave form.
引用
收藏
页数:8
相关论文
共 46 条
[21]   Nonlinear reaction-diffusion models of self-organization and deterministic chaos: Theory and possible applications to description of electrical cardiac activity and cardiovascular circulation [J].
Kardashov, V. ;
Einav, Sh. ;
Okrent, Y. ;
Kardashov, T. .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2006, 2006 :1-16
[22]   ONE-PARAMETER FAMILY OF SOLITON-SOLUTIONS WITH COMPACT SUPPORT IN A CLASS OF GENERALIZED KORTEWEG-DE VRIES EQUATIONS [J].
KHARE, A ;
COOPER, F .
PHYSICAL REVIEW E, 1993, 48 (06) :4843-4844
[23]   Bose gas with nontrivial particle interaction and semiclassical interpretation of exotic solitons [J].
Kovalev, AS ;
Gvozdikova, MV .
LOW TEMPERATURE PHYSICS, 1998, 24 (07) :484-488
[24]   Local discontinuous Galerkin methods for nonlinear dispersive equations [J].
Levy, D ;
Shu, CW ;
Yan, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 196 (02) :751-772
[25]   Patterns on liquid surfaces: cnoidal waves, compactons and scaling [J].
Ludu, A ;
Draayer, JP .
PHYSICA D, 1998, 123 (1-4) :82-91
[26]   Stability and dynamical properties of Cooper-Shepard-Sodano compactons [J].
Mihaila, Bogdan ;
Cardenas, Andres ;
Cooper, Fred ;
Saxena, Avadh .
PHYSICAL REVIEW E, 2010, 82 (06)
[27]   Stability and dynamical properties of Rosenau-Hyman compactons using Pade approximants [J].
Mihaila, Bogdan ;
Cardenas, Andres ;
Cooper, Fred ;
Saxena, Avadh .
PHYSICAL REVIEW E, 2010, 81 (05)
[28]   Phase compactons [J].
Pikovsky, Arkady ;
Rosenau, Philip .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 218 (01) :56-69
[29]   Magnetic polarons in one-dimensional antiferromagnetic chains [J].
Prilepsky, Jaroslaw E. ;
Kovalev, Alexander S. ;
Johansson, Magnus ;
Kivshar, Yuri S. .
PHYSICAL REVIEW B, 2006, 74 (13)
[30]   Phase compactons in chains of dispersively coupled oscillators [J].
Rosenau, P ;
Pikovsky, A .
PHYSICAL REVIEW LETTERS, 2005, 94 (17)