Properties of compacton-anticompacton collisions

被引:9
作者
Cardenas, Andres [1 ,2 ]
Mihaila, Bogdan [1 ]
Cooper, Fred [3 ,4 ,5 ]
Saxena, Avadh [4 ,5 ]
机构
[1] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA
[2] NYU, Dept Phys, New York, NY 10003 USA
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
[4] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
关键词
SOLITON-SOLUTIONS; WAVES; EQUATIONS; LINES; KINKS;
D O I
10.1103/PhysRevE.83.066705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the properties of compacton-anticompacton collision processes. We compare and contrast results for the case of compacton-anticompacton solutions of the K(l, p) Rosenau-Hyman (RH) equation for l = p = 2, with compacton-anticompacton solutions of the L(l, p) Cooper-Shepard-Sodano (CSS) equation for p = 1 and l = 3. This study is performed using a Pade discretization of the RH and CSS equations. We find a significant difference in the behavior of compacton-anticompacton scattering. For the CSS equation, the scattering can be interpreted as "annihilation" as the wake left behind dissolves over time. In the RH equation, the numerical evidence is that multiple shocks form after the collision, which eventually lead to "blowup" of the resulting wave form.
引用
收藏
页数:8
相关论文
共 46 条
  • [1] Compact self-gravitating solutions of quartic (K) fields in brane cosmology
    Adam, C.
    Grandi, N.
    Klimas, P.
    Sanchez-Guillen, J.
    Wereszczynski, A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (37)
  • [2] Compactons versus solitons
    Assis, Paulo E. G.
    Fring, Andreas
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2010, 74 (06): : 857 - 865
  • [3] Baker G., 1995, PADE APPROXIMANTS
  • [4] Bender CM, 2009, PRAMANA-J PHYS, V73, P375, DOI 10.1007/s12043-009-0129-1
  • [5] Bertozzi AL, 1996, COMMUN PUR APPL MATH, V49, P85, DOI 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO
  • [6] 2-2
  • [7] Finite-length soliton solutions of the local homogeneous nonlinear Schrodinger equation
    Caparelli, EC
    Dodonov, VV
    Mizrahi, SS
    [J]. PHYSICA SCRIPTA, 1998, 58 (05): : 417 - 420
  • [8] Particle methods for dispersive equations
    Chertock, A
    Levy, D
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 171 (02) : 708 - 730
  • [9] Discrete Burridge-Knopoff model, with exact solitonic or compactlike traveling wave solution
    Comte, JC
    Dinda, PT
    Remoissenet, M
    [J]. PHYSICAL REVIEW E, 2002, 65 (02):
  • [10] Compact-like kink in a real electrical reaction-diffusion chain
    Comte, JC
    Marquié, P
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 29 (02) : 307 - 312