Asymptotic inverse problem for almost-periodically perturbed quantum harmonic oscillator

被引:0
|
作者
Pokrovski, Alexis [1 ]
机构
[1] St Petersburg State Univ, Lab Quantum Networks, Inst Phys, St Petersburg 198504, Russia
关键词
almost-periodic perturbation; inverse problem; quantum harmonic oscillator; spectral asymptotics;
D O I
10.1007/s11040-007-9025-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {mu(n)}(n=0)(infinity) be the spectrum of -d(2/)dx(2) + x(2) + q( x) in L-2( R), where q is an even almost-periodic complex-valued function with bounded primitive and derivative. It is known that mu(n) = mu(0)(n) + O(n(-1/4)), where {mu(0)(n)}(n=0)(infinity) is the spectrum of the unperturbed operator. Suppose that the asymptotic approximation to the first asymptotic correction Delta mu(n) = mu n - mu(0)(n)+ o( n(-1/4)) is given. We prove the formula that recovers the frequencies and the Fourier coefficients of q in terms of Delta mu(n).
引用
收藏
页码:197 / 203
页数:7
相关论文
共 50 条
  • [21] Spectral inverse problem for q-deformed harmonic oscillator
    Bera, P. K.
    Datta, J.
    PRAMANA-JOURNAL OF PHYSICS, 2006, 67 (06): : 1023 - 1035
  • [22] THE PROBLEM OF QUANTUM CHAOS IN A KICKED HARMONIC-OSCILLATOR
    BERMAN, GP
    RUBAEV, VY
    ZASLAVSKY, GM
    NONLINEARITY, 1991, 4 (02) : 543 - 566
  • [23] The initial condition problem of damped quantum harmonic oscillator
    Gao, Yang
    O'Connell, Robert F.
    Tang, Qing Bin
    Wang, Ru Min
    EUROPEAN PHYSICAL JOURNAL D, 2015, 69 (01):
  • [24] The initial condition problem of damped quantum harmonic oscillator
    Yang Gao
    Robert F. O’Connell
    Qing Bin Tang
    Ru Min Wang
    The European Physical Journal D, 2015, 69
  • [25] Fluctuation expansion in the quantum optimal control of one dimensional perturbed harmonic oscillator
    Baykara, N. A.
    Demiralp, M.
    Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B : 56 - 59
  • [27] Duality between the quantum inverted harmonic oscillator and inverse square potentials
    Sundaram, Sriram
    Burgess, C. P.
    O'Dell, D. H. J.
    NEW JOURNAL OF PHYSICS, 2024, 26 (05):
  • [28] Step potential problem and harmonic oscillator problem in the minimum length quantum mechanics
    Park, Soyeon
    Woo, Byeong Hyo
    Jung, Min
    Jang, Eun Ji
    Chung, Won Sang
    MODERN PHYSICS LETTERS A, 2015, 30 (20)
  • [29] Wave functions with discrete and with continuous spectrum for quantum damped harmonic oscillator perturbed by a singularity
    Choi, JR
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (07): : 1007 - 1020
  • [30] The non-Hermitian Hamiltonian for periodically driven harmonic oscillator and classical-quantum correspondence
    Xin, JunLi
    Ma, ZiWei
    Huang, Li
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2024, 54 (06)