Acidity Suppression of Hole Transport Layer via Solution Reaction of Neutral PEDOT:PSS for Stable Perovskite Photovoltaics

被引:27
作者
Kim, Minseong [1 ]
Yi, Minji [1 ]
Jang, Woongsik [1 ]
Kim, Jung Kyu [2 ]
Wang, Dong Hwan [1 ]
机构
[1] Chung Ang Univ, Sch Integrat Engn, Seoul 06974, South Korea
[2] Sungkyunkwan Univ SKKU, Sch Chem Engn, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
conducting polymers; photovoltaic devices; controlled pH; charge transport; stability; LIGHT-EMITTING-DIODES; INDIUM-TIN-OXIDE; SOLAR-CELLS; HIGH-PERFORMANCE; ELECTRICAL-CONDUCTIVITY; POLYMER; PSS; EFFICIENT; FILMS; INTERFACE;
D O I
10.3390/polym12010129
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS) is typically used for hole transport layers (HTLs), as it exhibits attractive mechanical, electrical properties, and easy processability. However, the intrinsically acidic property can degrade the crystallinity of perovskites, limiting the stability and efficiency of perovskite solar cells (PSCs). In this study, inverted CH3NH3PbI3 photovoltaic cells were fabricated with acidity suppressed HTL. We adjusted PEDOT:PSS via a solution reaction of acidic and neutral PEDOT:PSS. And we compared the various pH-controlled HTLs for PSCs devices. The smoothness of the pH-controlled PEDOT:PSS layer was similar to that of acidic PEDOT:PSS-based devices. These layers induced favorable crystallinity of perovskite compared with acidic PEDOT:PSS layers. Furthermore, the enhanced stability of pH optimized PEDOT:PSS-based devices, including the prevention of degradation by a strong acid, allowed the device to retain its power conversion efficiency (PCE) value by maintaining 80% of PCE for approximately 150 h. As a result, the pH-controlled HTL layer fabricated through the solution reaction maintained the surface morphology of the perovskite layer and contributed to the stable operation of PSCs.
引用
收藏
页数:14
相关论文
共 68 条
  • [1] Printable anodes for flexible organic solar cell modules
    Aernouts, T
    Vanlaeke, P
    Geens, W
    Poortmans, J
    Heremans, P
    Borghs, S
    Mertens, R
    Andriessen, R
    Leenders, L
    [J]. THIN SOLID FILMS, 2004, 451 : 22 - 25
  • [2] New insights into the characterization of poly(3-chlorothiophene) for electrochromic devices
    Aradilla, David
    Casanovas, Jordi
    Estrany, Francesc
    Iribarren, Jose I.
    Aleman, Carlos
    [J]. POLYMER CHEMISTRY, 2012, 3 (02) : 436 - 449
  • [3] Doped conducting-polymer-semiconducting-polymer interfaces:: Their use in organic photovoltaic devices
    Arias, AC
    Granström, M
    Thomas, DS
    Petritsch, K
    Friend, RH
    [J]. PHYSICAL REVIEW B, 1999, 60 (03): : 1854 - 1860
  • [4] Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells
    Bi, Cheng
    Wang, Qi
    Shao, Yuchuan
    Yuan, Yongbo
    Xiao, Zhengguo
    Huang, Jinsong
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [5] Conversion of Single Crystalline PbI2 to CH3NH3PbI3: Structural Relations and Transformation Dynamics
    Brenner, Thomas M.
    Rakita, Yevgeny
    Orr, Yonatan
    Klein, Eugenia
    Feldman, Ishay
    Elbaum, Michael
    Cahen, David
    Hodes, Gary
    [J]. CHEMISTRY OF MATERIALS, 2016, 28 (18) : 6501 - 6510
  • [6] Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer
    Brown, TM
    Kim, JS
    Friend, RH
    Cacialli, F
    Daik, R
    Feast, WJ
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (12) : 1679 - 1681
  • [7] Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode
    Cao, Y
    Yu, G
    Zhang, C
    Menon, R
    Heeger, AJ
    [J]. SYNTHETIC METALS, 1997, 87 (02) : 171 - 174
  • [8] Recent Progress in Polymer Solar Cells: Manipulation of Polymer: Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells
    Chen, Li-Min
    Hong, Ziruo
    Li, Gang
    Yang, Yang
    [J]. ADVANCED MATERIALS, 2009, 21 (14-15) : 1434 - 1449
  • [9] Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells
    Chen, Wei-Yi
    Deng, Lin-Long
    Dai, Si-Min
    Wang, Xin
    Tian, Cheng-Bo
    Zhan, Xin-Xing
    Xie, Su-Yuan
    Huang, Rong-Bin
    Zheng, Lan-Sun
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (38) : 19353 - 19359
  • [10] Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells
    Choi, Hyosung
    Mai, Cheng-Kang
    Kim, Hak-Beom
    Jeong, Jaeki
    Song, Seyeong
    Bazan, Guillermo C.
    Kim, Jin Young
    Heeger, Alan J.
    [J]. NATURE COMMUNICATIONS, 2015, 6