Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces of revolution

被引:6
作者
Ding Yong [1 ]
Yabuta, Kozo [2 ]
机构
[1] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Kwansei Gakuin Univ, Res Ctr Math Sci, Gakuen 2-1, Sanda 6691337, Japan
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
singular integrals; Triebel-Lizorkin spaces; rough kernel; surface of revolution; OPERATORS; SUBMANIFOLDS; KERNELS;
D O I
10.1007/s11425-016-5154-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the boundedness of the rough singular integral operator T-Omega,T-psi,T-h along a surface of revolution on the Triebel-Lizorkin space (F) over dot(p,q)(alpha) (R-n) for Omega is an element of H-1(Sn-1) and Omega is an element of L log(+)L(Sn-1) boolean OR (boolean OR(1<q<infinity) B-q((0,0)) (Sn-1)), respectively.
引用
收藏
页码:1721 / 1736
页数:16
相关论文
共 28 条
[21]   SOME REMARKS ON MARCINKIEWICZ INTEGRALS ALONG SUBMANIFOLDS [J].
Li, Wenjuan ;
Yabuta, Kozo .
TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (05) :1647-1679
[22]  
Lu S, 2007, FRONT MATH CHINA, V2, P61
[23]   Rough singular integrals associated to surfaces of revolution [J].
Lu, SZ ;
Pan, YB ;
Yang, DC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (10) :2931-2940
[24]  
Lu SZ., 1992, ACTA MATH SIN CHIN S, V35, P63
[25]  
Triebel H., 1995, INTERPOLATION THEORY
[26]  
Weiss G., 1989, SPACES GENERATED BLO
[28]   A note on certain block spaces on the unit sphere [J].
Ye, Xiao Feng ;
Zhu, Xiang Rong .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (06) :1843-1846