Consistent brain structural abnormalities and multisite individualised classification of schizophrenia using deep neural networks

被引:19
作者
Cui, Yue [1 ,2 ,3 ]
Li, Chao [1 ,2 ,3 ]
Liu, Bing [4 ,5 ]
Sui, Jing [4 ]
Song, Ming [1 ,2 ,3 ]
Chen, Jun [6 ]
Chen, Yunchun [7 ]
Guo, Hua [8 ]
Li, Peng [9 ,10 ]
Lu, Lin [9 ,10 ,11 ]
Lv, Luxian [12 ,13 ]
Ning, Yuping [14 ]
Wan, Ping [8 ]
Wang, Huaning [7 ]
Wang, Huiling [15 ]
Wu, Huawang [14 ]
Yan, Hao [9 ,10 ]
Yan, Jun [9 ,10 ]
Yang, Yongfeng [12 ,13 ,16 ]
Zhang, Hongxing [12 ,13 ,17 ]
Zhang, Dai [9 ,10 ,11 ]
Jiang, Tianzi [1 ,2 ,3 ,16 ,18 ,19 ]
机构
[1] Chinese Acad Sci, Brainnetome Ctr, Inst Automat, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
[4] Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing, Peoples R China
[5] Chinese Inst Brain Res, Beijing, Peoples R China
[6] Wuhan Univ, Renmin Hosp, Dept Radiol, Wuhan, Hubei, Peoples R China
[7] Fourth Mil Med Univ, Dept Psychiat, Xijing Hosp, Xian, Shaanxi, Peoples R China
[8] Zhumadian Psychiat Hosp, Zhumadian, Henan, Peoples R China
[9] Peking Univ Sixth Hosp, Inst Mental Hlth, Beijing, Peoples R China
[10] Peking Univ, Minist Hlth, Key Lab Mental Hlth, Beijing, Peoples R China
[11] Peking Univ, Ctr Life Sci, PKU IDG, McGovern Inst Brain Res, Beijing, Peoples R China
[12] Xinxiang Med Univ, Affiliated Hosp 2, Henan Mental Hosp, Dept Psychiat, Xinxiang, Henan, Peoples R China
[13] Xinxiang Med Univ, Henan Key Lab Biol Psychiat, Xinxiang, Henan, Peoples R China
[14] Guanghou Med Univ, Guangzhou Hui Ai Hosp, Guangzhou Brain Hosp, Affiliated Brain Hosp, Guangzhou, Peoples R China
[15] Wuhan Univ, Renmin Hosp, Dept Psychiat, Wuhan, Hubei, Peoples R China
[16] Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Inst Automat, Beijing, Peoples R China
[17] Xinxiang Med Univ, Dept Psychol, Xinxiang, Henan, Peoples R China
[18] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Minist Educ, Key Lab NeuroInformat, Beijing, Peoples R China
[19] Univ Queensland, Queensland Brain Inst, Brisbane, Qld, Australia
关键词
Deep learning; grey matter; meta-analysis; multisite study; schizophrenia; LIKELIHOOD ESTIMATION; VOLUME; METAANALYSIS; 1ST-EPISODE;
D O I
10.1192/bjp.2022.22
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Background Previous analyses of grey and white matter volumes have reported that schizophrenia is associated with structural changes. Deep learning is a data-driven approach that can capture highly compact hierarchical non-linear relationships among high-dimensional features, and therefore can facilitate the development of clinical tools for making a more accurate and earlier diagnosis of schizophrenia. Aims To identify consistent grey matter abnormalities in patients with schizophrenia, 662 people with schizophrenia and 613 healthy controls were recruited from eight centres across China, and the data from these independent sites were used to validate deep-learning classifiers. Method We used a prospective image-based meta-analysis of whole-brain voxel-based morphometry. We also automatically differentiated patients with schizophrenia from healthy controls using combined grey matter, white matter and cerebrospinal fluid volumetric features, incorporated a deep neural network approach on an individual basis, and tested the generalisability of the classification models using independent validation sites. Results We found that statistically reliable schizophrenia-related grey matter abnormalities primarily occurred in regions that included the superior temporal gyrus extending to the temporal pole, insular cortex, orbital and middle frontal cortices, middle cingulum and thalamus. Evaluated using leave-one-site-out cross-validation, the performance of the classification of schizophrenia achieved by our findings from eight independent research sites were: accuracy, 77.19-85.74%; sensitivity, 75.31-89.29% and area under the receiver operating characteristic curve, 0.797-0.909. Conclusions These results suggest that, by using deep-learning techniques, multidimensional neuroanatomical changes in schizophrenia are capable of robustly discriminating patients with schizophrenia from healthy controls, findings which could facilitate clinical diagnosis and treatment in schizophrenia.
引用
收藏
页码:732 / 739
页数:8
相关论文
共 26 条
  • [1] Sparse deep neural networks on imaging genetics for schizophrenia case-control classification
    Chen, Jiayu
    Li, Xiang
    Calhoun, Vince D.
    Turner, Jessica A.
    van Erp, Theo G. M.
    Wang, Lei
    Andreassen, Ole A.
    Agartz, Ingrid
    Westlye, Lars T.
    Jonsson, Erik
    Ford, Judith M.
    Mathalon, Daniel H.
    Macciardi, Fabio
    O'Leary, Daniel S.
    Liu, Jingyu
    Ji, Shihao
    [J]. HUMAN BRAIN MAPPING, 2021, 42 (08) : 2556 - 2568
  • [2] The anatomy of first-episode and chronic schizophrenia: An anatomical likelihood estimation meta-analysis
    Ellison-Wright, Ian
    Glahn, David C.
    Laird, Angela R.
    Thelen, Sarah M.
    Bullmore, Edward T.
    [J]. AMERICAN JOURNAL OF PSYCHIATRY, 2008, 165 (08) : 1015 - 1023
  • [3] Comparisons of Voxel-Based Morphometric Brain Volumes of Individuals with Methamphetamine-Induced Psychotic Disorder and Schizophrenia Spectrum Disorder and Healthy Controls
    Farnia, Vahid
    Farshchian, Firoozeh
    Farshchian, Nazanin
    Alikhani, Mostafa
    Bahmani, Dena Sadeghi
    Brand, Serge
    [J]. NEUROPSYCHOBIOLOGY, 2020, 79 (02) : 170 - 178
  • [4] First M. B., 2002, Structured clinical interview for DSMIVTR axis I disorders, research version, Vpatient ed.
  • [5] Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex
    Gaser, C
    Nenadic, I
    Buchsbaum, BR
    Hazlett, EA
    Buchsbaum, MS
    [J]. AMERICAN JOURNAL OF PSYCHIATRY, 2004, 161 (01) : 154 - 156
  • [6] Meta-Analysis of Gray Matter Anomalies in Schizophrenia: Application of Anatomic Likelihood Estimation and Network Analysis
    Glahn, David C.
    Laird, Angela R.
    Ellison-Wright, Ian
    Thelen, Sarah M.
    Robinson, Jennifer L.
    Lancaster, Jack L.
    Bullmore, Edward T.
    Fox, Peter T.
    [J]. BIOLOGICAL PSYCHIATRY, 2008, 64 (09) : 774 - 781
  • [7] Temporolimbic volume reductions in schizophrenia
    Gur, RE
    Turetsky, BI
    Cowell, PE
    Finkelman, C
    Maany, V
    Grossman, RI
    Arnold, SE
    Bilker, WB
    Gur, RC
    [J]. ARCHIVES OF GENERAL PSYCHIATRY, 2000, 57 (08) : 769 - 775
  • [8] Brain Volumes in Schizophrenia: A Meta-Analysis in Over 18 000 Subjects
    Haijma, Sander V.
    Van Haren, Neeltje
    Cahn, Wiepke
    Koolschijn, P. Cedric M. P.
    Pol, Hilleke E. Hulshoff
    Kahn, Rene S.
    [J]. SCHIZOPHRENIA BULLETIN, 2013, 39 (05) : 1129 - 1138
  • [9] Early brain development in infants at high risk for autism spectrum disorder
    Hazlett, Heather Cody
    Gu, Hongbin
    Munsell, Brent C.
    Kim, Sun Hyung
    Styner, Martin
    Wolff, Jason J.
    Elison, Jed T.
    Swanson, Meghan R.
    Zhu, Hongtu
    Otteron, Kelly N. B.
    Collins, D. Louis
    Constantino, John N.
    Dager, Stephen R.
    Estes, Annette M.
    Evans, Alan C.
    Fonov, Vladimir S.
    Gerig, Guido
    Kostopoulos, Penelope
    McKinstry, Robert C.
    Pandey, Juhi
    Paterson, Sarah
    Pruett, John R., Jr.
    Schultz, Robert T.
    Shaw, Dennis W.
    Zwaigenbaum, Lonnie
    Piven, Joseph
    [J]. NATURE, 2017, 542 (7641) : 348 - +
  • [10] Regional deficits in brain volume in schizophrenia: A meta-analysis of voxel-based morphometry studies
    Honea, R
    Crow, TJ
    Passingham, D
    Mackay, CE
    [J]. AMERICAN JOURNAL OF PSYCHIATRY, 2005, 162 (12) : 2233 - 2245