Fabrication and VUV luminescence of Lu2O3:Eu3+ (5 at.%) nanopowders and transparent ceramics

被引:2
|
作者
Safronova, N. A. [1 ]
Yavetskiy, R. P. [1 ]
Kryzhanovska, O. S. [1 ]
Parkhomenko, S. V. [1 ]
Doroshenko, A. G. [1 ]
Dobrotvorska, M. V. [1 ]
Tolmachev, A. V. [1 ]
Boulesteix, R. [2 ]
Maitre, A. [2 ]
Zorenko, T. [3 ,4 ]
Zorenko, Yu [3 ,4 ]
机构
[1] NAS Ukraine, Inst Single Crystals, 60 Nauky Ave, UA-61072 Kharkiv, Ukraine
[2] Univ Limoges, IRCER, UMR CNRS 7315, 12 Rue Atlantis, Limoges, France
[3] Ivan Franko Univ Lviv, Elect Dept, Gen Tarnavski Str 107, UA-79036 Lvov, Ukraine
[4] Kazimierz Wielki Univ Bydgoszcz, Inst Phys, PL-85090 Bydgoszcz, Poland
关键词
Lu2O3:Eu3+ nanopowders; Vacuum sintering; Transparent ceramics; Luminescent properties; VUV spectroscopy; Energy level diagram; SYNCHROTRON-RADIATION; ELECTRON EXCITATIONS; CRYSTALS; SCINTILLATOR; BEHAVIOR; OXIDES;
D O I
10.1016/j.optmat.2020.109730
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Low-agglomerated (LuO3)-O-2:Eu3+ 5 at.% nanopowders, as well as transparent ceramics were fabricated by co-precipitation with ammonium hydrogen carbonate and vacuum sintering method, respectively. It was determined that transition of a part of europium ions into the divalent state enhanced sinterability due to formation of anionic vacancies and decrease of the RE-O bonds covalency. The luminescent properties of the Lu2O3:Eu3+ 5 at. % nanopowders and ceramics were studied under excitation by synchrotron radiation. The difference in the excitation spectra of (LuO3)-O-2:Eu3+ nanopowders and ceramics are caused by participation of the F+ centers in the excitation processes of Eu3+ luminescence in Lu2O3 host. Finally, the locations of the energy levels related to the Eu3+ dopant in Lu2O3 matrix were determined.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Electrospinning synthesis and luminescent properties of Lu2O3:Eu3+ nanofibers
    Zhang Hao
    Chen Jindeng
    Guo Hai
    JOURNAL OF RARE EARTHS, 2010, 28 : 232 - 235
  • [42] Spectral Probing of Surface Luminescence of Cubic Lu2O3:Eu3+ Nanocrystals Synthesized by Hydrothermal Approach
    Li, Yanping
    Zhang, Jiahua
    Zhang, Xia
    Luo, Yongshi
    Lu, Shaozhe
    Hao, Zhendong
    Wang, Xiaojun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (41): : 17705 - 17710
  • [43] Analysis of Eu3+ emission from different sites in Lu2O3
    Zych, E
    Karbowiak, M
    Domagala, K
    Hubert, S
    JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 341 (1-2) : 381 - 384
  • [44] Preparation and optical properties of nanocrystalline Lu2O3:Eu3+ phosphors
    Daldosso, Matteo
    Sokolnicki, Jerzy
    Kepinski, Leszek
    Legendziewicz, Janina
    Speghini, Adolfo
    Bettinelli, Marco
    JOURNAL OF LUMINESCENCE, 2007, 122 : 858 - 861
  • [45] Theoretical analysis on quenching mechanisms for Lu2O3: Eu3+ nanospheres
    Zhang, Bingye
    Han, Lu
    Qi, Ye
    Zhang, Jinsu
    Chen, Baojiu
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (23) : 18015 - 18021
  • [46] Fabrication and Luminescent Properties of Nd3+-Doped Lu2O3 Transparent Ceramics by Pressureless Sintering
    Zhou, Ding
    Shi, Ying
    Xie, Jianjun
    Ren, Yuying
    Yun, Ping
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (10) : 2182 - 2187
  • [47] Size effects on optical properties of Lu2O3:Eu3+ nanocrystallites
    Strek, W
    Zych, E
    Hreniak, D
    JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 344 (1-2) : 332 - 336
  • [48] Preparation and luminescence properties of Lu2O3:Eu3+ nanofibers by sol-gel/electrospinning process
    Li, Xue
    Yu, Min
    Hou, Zhiyao
    Wang, Wenxin
    Li, Guogang
    Cheng, Ziyong
    Chai, Ruitao
    Lin, Jun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 349 (01) : 166 - 172
  • [49] Theoretical analysis on quenching mechanisms for Lu2O3: Eu3+ nanospheres
    Bingye Zhang
    Lu Han
    Ye Qi
    Jinsu Zhang
    Baojiu Chen
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 18015 - 18021
  • [50] Electrospinning synthesis and luminescent properties of Lu2O3:Eu3+ nanofibers
    张浩
    陈金灯
    郭海
    JournalofRareEarths, 2010, 28(S1) (S1) : 232 - 235