VGG19 Network Assisted Joint Segmentation and Classification of Lung Nodules in CT Images

被引:65
作者
Khan, Muhammad Attique [1 ]
Rajinikanth, Venkatesan [2 ]
Satapathy, Suresh Chandra [3 ]
Taniar, David [4 ]
Mohanty, Jnyana Ranjan [5 ]
Tariq, Usman [6 ]
Damasevicius, Robertas [7 ]
机构
[1] HITEC Univ, Dept Comp Sci, Taxila 47080, Pakistan
[2] St Josephs Coll Engn, Dept Elect & Instrumentat Engn, Chennai 600119, Tamil Nadu, India
[3] Deemed Be Univ, Sch Comp Engn, Kalinga Inst Ind Technol, Bhubaneswar 751024, Odisha, India
[4] Monash Univ, Fac Informat Technol, Clayton, Vic 3800, Australia
[5] Deemed Be Univ, Sch Comp Applicat, Kalinga Inst Ind Technol, Bhubaneswar 751024, Odisha, India
[6] Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Al Kharj 11942, Saudi Arabia
[7] Silesian Tech Univ, Fac Appl Math, PL-44100 Gliwice, Poland
关键词
lung CT images; nodule detection; VGG-SegNet; pre-trained VGG19; deep learning; DEEP LEARNING FEATURES; PULMONARY NODULES; FUSION; CANCER; INFORMATION; FRAMEWORK; ENSEMBLE; DISEASES;
D O I
10.3390/diagnostics11122208
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Pulmonary nodule is one of the lung diseases and its early diagnosis and treatment are essential to cure the patient. This paper introduces a deep learning framework to support the automated detection of lung nodules in computed tomography (CT) images. The proposed framework employs VGG-SegNet supported nodule mining and pre-trained DL-based classification to support automated lung nodule detection. The classification of lung CT images is implemented using the attained deep features, and then these features are serially concatenated with the handcrafted features, such as the Grey Level Co-Occurrence Matrix (GLCM), Local-Binary-Pattern (LBP) and Pyramid Histogram of Oriented Gradients (PHOG) to enhance the disease detection accuracy. The images used for experiments are collected from the LIDC-IDRI and Lung-PET-CT-Dx datasets. The experimental results attained show that the VGG19 architecture with concatenated deep and handcrafted features can achieve an accuracy of 97.83% with the SVM-RBF classifier.
引用
收藏
页数:16
相关论文
共 57 条
  • [1] Automated Detection of Alzheimer's Disease Using Brain MRI Images- A Study with Various Feature Extraction Techniques
    Acharya, U. Rajendra
    Fernandes, Steven Lawrence
    WeiKoh, Joel En
    Ciaccio, Edward J.
    Fabell, Mohd Kamil Mohd
    Tanik, U. John
    Rajinikanth, V
    Yeong, Chai Hong
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (09)
  • [2] Skin lesion segmentation and recognition using multichannel saliency estimation and M-SVM on selected serially fused features
    Akram T.
    Khan M.A.
    Sharif M.
    Yasmin M.
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (01) : 1083 - 1102
  • [3] A novel framework for rapid diagnosis of COVID-19 on computed tomography scans
    Akram, Tallha
    Attique, Muhammad
    Gul, Salma
    Shahzad, Aamir
    Altaf, Muhammad
    Naqvi, S. Syed Rameez
    Damasevicius, Robertas
    Maskeliunas, Rytis
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2021, 24 (03) : 951 - 964
  • [4] AI-driven deep CNN approach for multi-label pathology classification using chest X-Rays
    Albahli, Saleh
    Rauf, Hafiz Tayyab
    Algosaibi, Abdulelah
    Balas, Valentina Emilia
    [J]. PEERJ COMPUTER SCIENCE, 2021, 7 : 1 - 17
  • [5] Identification of Thoracic Diseases by Exploiting Deep Neural Networks
    Albahli, Saleh
    Rauf, Hafiz Tayyab
    Arif, Muhammad
    Nafis, Md Tabrez
    Algosaibi, Abdulelah
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (03): : 3139 - 3149
  • [6] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [7] A multilevel paradigm for deep convolutional neural network features selection with an application to human gait recognition
    Arshad, Habiba
    Khan, Muhammad Attique
    Sharif, Muhammad Irfan
    Yasmin, Mussarat
    Tavares, Joao Manuel R. S.
    Zhang, Yu-Dong
    Satapathy, Suresh Chandra
    [J]. EXPERT SYSTEMS, 2022, 39 (07)
  • [8] An Ensemble of Optimal Deep Learning Features for Brain Tumor Classification
    Aziz, Ahsan
    Attique, Muhammad
    Tariq, Usman
    Nam, Yunyoung
    Nazir, Muhammad
    Jeong, Chang-Won
    Mostafa, Reham R.
    Sakr, Rasha H.
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (02): : 2653 - 2670
  • [9] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [10] Deep neural network assisted diagnosis of time-frequency transformed electromyograms
    Bakiya, A.
    Kamalanand, K.
    Rajinikanth, V.
    Nayak, Ramesh Sunder
    Kadry, Seifedine
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (15-16) : 11051 - 11067