Feature-Based Machine Learning Model for Real-Time Hypoglycemia Prediction

被引:65
|
作者
Dave, Darpit [1 ]
DeSalvo, Daniel J. [2 ,3 ]
Haridas, Balakrishna [4 ]
McKay, Siripoom [2 ,3 ]
Shenoy, Akhil [2 ]
Koh, Chester J. [2 ,3 ]
Lawley, Mark [1 ]
Erraguntla, Madhav [1 ]
机构
[1] Texas A&M Univ, Dept Ind & Syst Engn, 4021 Emerging Technol Bldg, College Stn, TX 77843 USA
[2] Baylor Coll Med, Houston, TX 77030 USA
[3] Texas Childrens Hosp, Houston, TX 77030 USA
[4] Texas A&M Univ, Dept Biomed Engn, College Stn, TX USA
来源
JOURNAL OF DIABETES SCIENCE AND TECHNOLOGY | 2021年 / 15卷 / 04期
关键词
continuous glucose monitoring; feature extraction; machine learning; hypoglycemia prediction; insulin pump data; carbohydrate intake;
D O I
10.1177/1932296820922622
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Hypoglycemia is a serious health concern in youth with type 1 diabetes (T1D). Real-time data from continuous glucose monitoring (CGM) can be used to predict hypoglycemic risk, allowing patients to take timely intervention measures. Methods: A machine learning model is developed for probabilistic prediction of hypoglycemia (<70 mg/dL) in 30- and 60-minute time horizons based on CGM datasets obtained from 112 patients over a range of 90 days consisting of over 1.6 million CGM values under normal living conditions. A comprehensive set of features relevant for hypoglycemia are developed and a parsimonious subset with most influence on predicting hypoglycemic risk is identified. Model performance is evaluated both with and without contextual information on insulin and carbohydrate intake. Results: The model predicted hypoglycemia with >91% sensitivity for 30- and 60-minute prediction horizons while maintaining specificity >90%. Inclusion of insulin and carbohydrate data yielded performance improvement for 60-minute but not for 30-minute predictions. Model performance was highest for nocturnal hypoglycemia (similar to 95% sensitivity). Shortterm (less than one hour) and medium-term (one to four hours) features for good prediction performance are identified. Conclusions: Innovative feature identification facilitated high performance for hypoglycemia risk prediction in pediatric youth with T1D. Timely alerts of impending hypoglycemia may enable proactive measures to avoid severe hypoglycemia and achieve optimal glycemic control. The model will be deployed on a patient-facing smartphone application in an upcoming pilot study.
引用
收藏
页码:842 / 855
页数:14
相关论文
共 50 条
  • [11] Drought Prediction Based on Feature-Based Transfer Learning and Time Series Imaging
    Tian, Wan
    Wu, Jiujing
    Cui, Hengjian
    Hu, Tao
    IEEE ACCESS, 2021, 9 : 101454 - 101468
  • [12] Real-Time Lithology Prediction at the Bit Using Machine Learning
    Burak, Tunc
    Sharma, Ashutosh
    Hoel, Espen
    Kristiansen, Tron Golder
    Welmer, Morten
    Nygaard, Runar
    GEOSCIENCES, 2024, 14 (10)
  • [13] Real-Time TCP Packet Loss Prediction Using Machine Learning
    Welzl, Michael
    Islam, Safiqul
    von Stephanides, Maximilian
    IEEE ACCESS, 2024, 12 : 159622 - 159634
  • [14] Windower: Feature Extraction for Real-Time DDoS Detection Using Machine Learning
    Goldschmidt, Patrik
    Kucera, Jan
    PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024, 2024,
  • [15] Real-time prediction algorithm and simulation of sports results based on internet of things and machine learning
    Ma Y.
    Guo H.
    Sun Y.
    Liu F.
    International Journal of Information Technology and Management, 2023, 22 (3-4) : 386 - 406
  • [16] A real-time seismic damage prediction framework based on machine learning for earthquake early warning
    Zhang, Hui
    Yu, Dinghao
    Li, Gang
    Dong, Zhiqian
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2024, 53 (02) : 593 - 621
  • [17] Machine Learning and Case-Based Reasoning for Real-Time Onboard Prediction of the Survivability of Ships
    Louvros, Panagiotis
    Stefanidis, Fotios
    Boulougouris, Evangelos
    Komianos, Alexandros
    Vassalos, Dracos
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (05)
  • [18] Real-Time Network Intrusion Prevention System Based on Hybrid Machine Learning
    Seo, Wooseok
    Pak, Wooguil
    IEEE ACCESS, 2021, 9 : 46386 - 46397
  • [19] Machine Learning-Based Parametric Audiovisual Quality Prediction Models for Real-Time Communications
    Demirbilek, Edip
    Gregoire, Jean-Charles
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2017, 13 (02)
  • [20] Deep feature-based plant disease identification using machine learning classifier
    Hassan, Sk Mahmudul
    Maji, Arnab Kumar
    INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING, 2024, 20 (04) : 789 - 799