Feature-Based Machine Learning Model for Real-Time Hypoglycemia Prediction

被引:65
|
作者
Dave, Darpit [1 ]
DeSalvo, Daniel J. [2 ,3 ]
Haridas, Balakrishna [4 ]
McKay, Siripoom [2 ,3 ]
Shenoy, Akhil [2 ]
Koh, Chester J. [2 ,3 ]
Lawley, Mark [1 ]
Erraguntla, Madhav [1 ]
机构
[1] Texas A&M Univ, Dept Ind & Syst Engn, 4021 Emerging Technol Bldg, College Stn, TX 77843 USA
[2] Baylor Coll Med, Houston, TX 77030 USA
[3] Texas Childrens Hosp, Houston, TX 77030 USA
[4] Texas A&M Univ, Dept Biomed Engn, College Stn, TX USA
来源
JOURNAL OF DIABETES SCIENCE AND TECHNOLOGY | 2021年 / 15卷 / 04期
关键词
continuous glucose monitoring; feature extraction; machine learning; hypoglycemia prediction; insulin pump data; carbohydrate intake;
D O I
10.1177/1932296820922622
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Hypoglycemia is a serious health concern in youth with type 1 diabetes (T1D). Real-time data from continuous glucose monitoring (CGM) can be used to predict hypoglycemic risk, allowing patients to take timely intervention measures. Methods: A machine learning model is developed for probabilistic prediction of hypoglycemia (<70 mg/dL) in 30- and 60-minute time horizons based on CGM datasets obtained from 112 patients over a range of 90 days consisting of over 1.6 million CGM values under normal living conditions. A comprehensive set of features relevant for hypoglycemia are developed and a parsimonious subset with most influence on predicting hypoglycemic risk is identified. Model performance is evaluated both with and without contextual information on insulin and carbohydrate intake. Results: The model predicted hypoglycemia with >91% sensitivity for 30- and 60-minute prediction horizons while maintaining specificity >90%. Inclusion of insulin and carbohydrate data yielded performance improvement for 60-minute but not for 30-minute predictions. Model performance was highest for nocturnal hypoglycemia (similar to 95% sensitivity). Shortterm (less than one hour) and medium-term (one to four hours) features for good prediction performance are identified. Conclusions: Innovative feature identification facilitated high performance for hypoglycemia risk prediction in pediatric youth with T1D. Timely alerts of impending hypoglycemia may enable proactive measures to avoid severe hypoglycemia and achieve optimal glycemic control. The model will be deployed on a patient-facing smartphone application in an upcoming pilot study.
引用
收藏
页码:842 / 855
页数:14
相关论文
共 50 条
  • [1] Explainable Machine Learning for Real-Time Hypoglycemia and Hyperglycemia Prediction and Personalized Control Recommendations
    Duckworth, Christopher
    Guy, Matthew J.
    Kumaran, Anitha
    O'Kane, Aisling Ann
    Ayobi, Amid
    Chapman, Adriane
    Marshall, Paul
    Boniface, Michael
    JOURNAL OF DIABETES SCIENCE AND TECHNOLOGY, 2024, 18 (01): : 113 - 123
  • [2] Machine Learning for Real-Time Heart Disease Prediction
    Bertsimas, Dimitris
    Mingardi, Luca
    Stellato, Bartolomeo
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (09) : 3627 - 3637
  • [3] Real-Time Feature-Based Video Stabilization on FPGA
    Li, Jianan
    Xu, Tingfa
    Zhang, Kun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (04) : 907 - 919
  • [4] Real-Time Prediction for IC Aging Based on Machine Learning
    Huang, Ke
    Zhang, Xinqiao
    Karimi, Naghmeh
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (12) : 4756 - 4764
  • [5] Real-time pre-eclampsia prediction model based on IoT and machine learning
    Munyao, Michael Muia
    Maina, Elizaphan Muuro
    Mambo, Shadrack Maina
    Wanyoro, Anthony
    Discover Internet of Things, 2024, 4 (01):
  • [6] A Survey of Feature Selection for Vulnerability Prediction Using Feature-based Machine Learning
    Li, ZhanJun
    Shao, Yan
    ICMLC 2019: 2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2019, : 30 - 36
  • [7] Machine Learning for Feature-Based Analytics
    Wang, Li-C
    PROCEEDINGS OF THE 2018 INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN (ISPD'18), 2018, : 74 - 81
  • [8] An interpretable machine learning model for real-time sepsis prediction based on basic physiological indicators
    Zhang, T. Y.
    Zhong, M.
    Cheng, Y. -Z.
    Zhang, M. -W.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2023, 27 (10) : 4348 - 4356
  • [9] Real-time Machine Learning Prediction of an Agent-Based Model for Urban Decision-making
    Zhang, Yan
    Grignard, Arnaud
    Lyons, Kevin
    Aubuchon, Alexander
    Larson, Kent
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 2171 - 2173
  • [10] A Time-Phased Machine Learning Model for Real-Time Prediction of Sepsis in Critical Care
    Li, Xiang
    Xu, Xiao
    Xie, Fei
    Xu, Xian
    Sun, Yuyao
    Liu, Xiaoshuang
    Jia, Xiaoyu
    Kang, Yanni
    Xie, Lixin
    Wang, Fei
    Xie, Guotong
    CRITICAL CARE MEDICINE, 2020, 48 (10) : E884 - E888