Convergence rates of derivatives of a family of barycentric rational interpolants

被引:59
作者
Berrut, Jean-Paul [1 ]
Floater, Michael S. [2 ]
Klein, Georges [1 ]
机构
[1] Univ Fribourg, Dept Math, CH-1700 Fribourg, Switzerland
[2] Univ Oslo, Dept Informat, Ctr Math Applicat, N-0316 Oslo, Norway
基金
瑞士国家科学基金会;
关键词
Rational interpolation; Barycentric form; Convergence rate;
D O I
10.1016/j.apnum.2011.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In polynomial and spline interpolation the k-th derivative of the interpolant, as a function of the mesh size h, typically converges at the rate of O(h(d+1-k)) as h -> 0, where d is the degree of the polynomial or spline. In this paper we establish, in the important cases k = 1,2, the same convergence rate for a recently proposed family of barycentric rational interpolants based on blending polynomial interpolants of degree d. (C) 2011 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:989 / 1000
页数:12
相关论文
共 12 条
[1]  
[Anonymous], 1978, A Practical Guide to Splines
[2]  
[Anonymous], NUMERISCHE MATH
[3]  
Atkinson KE., 1989, INTRO NUMERICAL ANAL
[4]   Exponential convergence of a linear rational interpolant between transformed Chebyshev points [J].
Baltensperger, R ;
Berrut, JP ;
Noël, B .
MATHEMATICS OF COMPUTATION, 1999, 68 (227) :1109-1120
[5]  
BALTENSPERGER R, LINEAR RATIONA UNPUB
[6]   Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval [J].
Berrut, JP ;
Mittelmann, HD .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 33 (06) :77-86
[7]  
BOS L, LEBESGUE CONST UNPUB
[8]   Barycentric rational interpolation with no poles and high rates of approximation [J].
Floater, Michael S. ;
Hormann, Kai .
NUMERISCHE MATHEMATIK, 2007, 107 (02) :315-331
[9]  
Isaacson E., 1966, ANAL NUMERICAL METHO
[10]  
KLEIN G, LINEAR RATIONA UNPUB