On K-stability of finite covers

被引:18
作者
Dervan, Ruadhai [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会;
关键词
KAHLER-EINSTEIN METRICS; SCALAR CURVATURE; VARIETIES; SURFACES;
D O I
10.1112/blms/bdw029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that certain Galois covers of K-semistable Fano varieties are K-stable. We use this to give some new examples of Fano manifolds admitting Kahler-Einstein metrics, including hypersurfaces, double solids and threefolds.
引用
收藏
页码:717 / 728
页数:12
相关论文
共 38 条
  • [1] [Anonymous], 1957, Nagoya Math. J.
  • [2] [Anonymous], 2012, Thesis
  • [3] [Anonymous], 2013, Cambridge Tracts in Mathematics
  • [4] Arbarello E., 2011, GEOMETRY ALGEBRAIC C, V268, P963
  • [5] Arezzo C, 2006, J REINE ANGEW MATH, V591, P177
  • [6] Arzhantsev I., 2014, CAMBRIDGE STUDIES AD, V144
  • [7] Barth W., 2004, ERGEBNISSE MATH IHRE
  • [8] Berman R. J., 2012, ARXIV12056214MATHDG
  • [9] Boucksom S., 2015, ARXIV150406568MATHAG
  • [10] Log canonical thresholds of certain Fano hypersurfaces
    Cheltsov, Ivan
    Park, Jihun
    Won, Joonyeong
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2014, 276 (1-2) : 51 - 79