Semi-online scheduling with decreasing job sizes

被引:77
作者
Seiden, S
Sgall, J
Woeginger, G
机构
[1] Louisiana State Univ, Dept Comp Sci, Baton Rouge, LA 70803 USA
[2] AS CR, Math Inst, CZ-11567 Prague 1, Czech Republic
[3] Charles Univ Prague, Fac Math & Phys, Dept Math Appl, Prague, Czech Republic
[4] Graz Univ Technol, Math Inst, A-8010 Graz, Austria
关键词
analysis of algorithms; online algorithms; competitive ratio; scheduling;
D O I
10.1016/S0167-6377(00)00053-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We investigate the problem of semi-online scheduling jobs on m identical parallel machines where the jobs arrive in order of decreasing sizes. We present a complete solution for the preemptive variant of semi-online scheduling with decreasing job sizes. We give matching lower and upper bounds on the competitive ratio for any fixed number m of machines; these bounds tend To (1 + root3)/2 approximate to 1.36603, as the number of machines goes to infinity. Our results are also the best possible for randomized algorithms. For the non-preemptive variant of semi-online scheduling with decreasing job sizes, a result of Graham (SIAM J. Appl. Math. 17 (1969) 263-269) yields a (4/3 - 1/(3m))-competitive deterministic non-preemptive algorithm. For m=2 machines, we prove that this algorithm is the best possible (it is 7/6-competitive). For m=3 machines we give a lower bound of(1 + root 37)/6 approximate to 1.18046. Finally, we present a randomized non-preemptive 8/7-competitive algorithm for m = 2 machines and prove that this is optimal. (C) 2000 Elsevier Science B.V. All lights reserved.
引用
收藏
页码:215 / 221
页数:7
相关论文
共 19 条
[1]  
Albers S., 1997, STOC, P130
[2]  
Azar Y, 1998, LECT NOTES COMPUT SC, V1518, P71
[3]   A BETTER LOWER-BOUND FOR ONLINE SCHEDULING [J].
BARTAL, Y ;
KARLOFF, H ;
RABANI, Y .
INFORMATION PROCESSING LETTERS, 1994, 50 (03) :113-116
[4]   New algorithms for an ancient scheduling problem [J].
Bartal, Y ;
Fiat, A ;
Karloff, H ;
Vohra, R .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1995, 51 (03) :359-366
[5]   NEW LOWER AND UPPER-BOUNDS FOR ONLINE SCHEDULING [J].
CHEN, B ;
VANVLIET, A ;
WOEGINGER, GJ .
OPERATIONS RESEARCH LETTERS, 1994, 16 (04) :221-230
[6]   A LOWER-BOUND FOR RANDOMIZED ONLINE SCHEDULING ALGORITHMS [J].
CHEN, B ;
VANVLIET, A ;
WOEGINGER, GJ .
INFORMATION PROCESSING LETTERS, 1994, 51 (05) :219-222
[7]   An optimal algorithm for preemptive on-line scheduling [J].
Chen, B ;
vanVliet, A ;
Woeginger, GJ .
OPERATIONS RESEARCH LETTERS, 1995, 18 (03) :127-131
[8]  
Faigle U., 1989, Acta Cybernetica, V9, P107
[9]   AN ONLINE SCHEDULING HEURISTIC WITH BETTER WORST CASE RATIO THAN GRAHAM LIST SCHEDULING [J].
GALAMBOS, G ;
WOEGINGER, GJ .
SIAM JOURNAL ON COMPUTING, 1993, 22 (02) :349-355
[10]  
Graham R L., 1969, SIAM J APPL MATH, V17, P263