Privacy-Preserving ECG Classification With Branching Programs and Neural Networks

被引:112
作者
Barni, Mauro [1 ]
Failla, Picrluigi [2 ]
Lazzeretti, Riccardo [1 ]
Sadeghi, Ahmad-Reza [3 ,4 ]
Schneider, Thomas [4 ]
机构
[1] Univ Siena, Dept Informat Engn, I-53100 Siena, Italy
[2] Elt Elettron SpA, Res & Adv Syst Design Grp, I-00131 Rome, Italy
[3] Fraunhofer SIT, CASED, D-64293 Darmstadt, Germany
[4] Tech Univ Darmstadt, CASED, D-64293 Darmstadt, Germany
关键词
Linear branching programs; neural networks (NNs); privacy protection; quadratic discriminant function; secure biomedical systems; secure electrocardiogram (ECG) classification; IMPROVED GARBLED CIRCUIT; 2-PARTY COMPUTATION; SECURE EVALUATION; KEY;
D O I
10.1109/TIFS.2011.2108650
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Privacy protection is a crucial problem in many biomedical signal processing applications. For this reason, particular attention has been given to the use of secure multiparty computation techniques for processing biomedical signals, whereby nontrusted parties are able to manipulate the signals although they are encrypted. This paper focuses on the development of a privacy preserving automatic diagnosis system whereby a remote server classifies a biomedical signal provided by the client without getting any information about the signal itself and the final result of the classification. Specifically, we present and compare two methods for the secure classification of electrocardiogram (ECG) signals: the former based on linear branching programs (a particular kind of decision tree) and the latter relying on neural networks. The paper deals with all the requirements and difficulties related to working with data that must stay encrypted during all the computation steps, including the necessity of working with fixed point arithmetic with no truncation while guaranteeing the same performance of a floating point implementation in the plain domain. A highly efficient version of the underlying cryptographic primitives is used, ensuring a good efficiency of the two proposed methods, from both a communication and computational complexity perspectives. The proposed systems prove that carrying out complex tasks like ECG classification in the encrypted domain efficiently is indeed possible in the semihonest model, paving the way to interesting future applications wherein privacy of signal owners is protected by applying high security standards.
引用
收藏
页码:452 / 468
页数:17
相关论文
共 54 条
[1]  
Agrawal R, 2000, SIGMOD REC, V29, P439, DOI 10.1145/335191.335438
[2]  
AGUILAR C, 2010, LNCS, P138
[3]  
AIMEUR E, 2008, P 3 INT C AV REL SEC, P161
[4]  
Arulampalam G, 2001, ANZIIS 2001: PROCEEDINGS OF THE SEVENTH AUSTRALIAN AND NEW ZEALAND INTELLIGENT INFORMATION SYSTEMS CONFERENCE, P89
[5]   EFFICIENT PRIVACY-PRESERVING CLASSIFICATION OF ECG SIGNALS [J].
Barni, Mauro ;
Failla, Pierluigi ;
Lazzereni, Riccardo ;
Paus, Annika ;
Sadeghi, Ahmad-Reza ;
Schneider, Thomas ;
Kolesnikov, Vladimir .
2009 FIRST IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2009, :91-+
[6]  
Barni M, 2009, LECT NOTES COMPUT SC, V5789, P424, DOI 10.1007/978-3-642-04444-1_26
[7]  
Beaver D, 1995, LECT NOTES COMPUT SC, V963, P97
[8]   Composite Signal Representation for Fast and Storage-Efficient Processing of Encrypted Signals [J].
Bianchi, Tiziano ;
Piva, Alessandro ;
Barni, Mauro .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2010, 5 (01) :180-187
[9]  
BLANKENHORN D, 2008, MICROSOFT HLTH VAULT
[10]  
Boneh D, 2005, LECT NOTES COMPUT SC, V3378, P325